Learning Continuous Integration
with Jenkins

A beginner's guide to implementing Continuous Integration and
Continuous Delivery using Jenkins

Learning Continuous
Integration with Jenkins

A beginner's guide to implementing Continuous
Integration and Continuous Delivery using Jenkins

Nikhil Pathania

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

Learning Continuous Integration with Jenkins

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2016
Production reference: 1260516

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-483-0

www . packtpub.com

www.packtpub.com

Credits

Author
Nikhil Pathania

Reviewer
Thomas Dao

Commissioning Editor
Sarah Crofton

Acquisition Editor
Nikhil Karkal

Content Development Editors
Sumeet Sawant

Preeti Singh

Technical Editor
Siddhi Rane

Copy Editors
Roshni Banerjee

Rashmi Sawant

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Abhinash Sahu

lllustrations
Nikhil Pathania

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

About the Author

Nikhil Pathania is a DevOps consultant at HCL Technologies Bengaluru, India.
He started his career in the domain of software configuration management as an
SCM Engineer and later moved on to various other tools and technologies in the field
of automation and DevOps. In his career, he has architectured and implemented
Continuous Integration and Continuous Delivery solutions across diverse IT
projects. He enjoys finding new and better ways to automate and improve

manual processes.

Before HCL Technologies, he worked extensively with retail giant Tesco and
Wipro Technologies.

First and foremost my beautiful wife, Karishma, without whose love
and support this book would not have been possible.

I would like to thank Nikhil Karkal for bringing me this wonderful
opportunity to write a book on Jenkins and for helping me in the
preliminary stages of the book.

A great thanks to Thomas Dao, who provided me with valuable
feedback throughout the writing process.

Most importantly, a special thanks to the following people who
worked hard to make this book the best possible experience for the
readers: Siddhi Rane, Preeti Singh, Sumeet Sawant, and the whole
Packt Publishing technical team working in the backend.

And finally, a great thanks to the Jenkins community for creating
such a wonderful software.

About the Reviewer

Thomas Dao has worn many hats in IT from Unix administration,
build/release engineering, DevOps engineering, Android development, and
now a dad to his bundle of joy, Carina. He also enjoys being the organizer of
the Eastside Android Developers GDG meetup group. He can be reached at

tom@tomseattle.com.

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

* On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Table of Contents

Preface

Chapter 1: Concepts of Continuous Integration

The agile software development process
Software development life cycle
Requirement analysis
Design
Implementation
Testing
Evolution
The waterfall model of software development
Disadvantages of the waterfall model
Who needs the waterfall model?
Agile to the rescue
How does the agile software development process work?
The Scrum framework
Important terms used in the Scrum framework
How does Scrum work?
Sprint planning
Sprint cycle
Daily scrum meeting
Monitoring sprint progress
The sprint review
Sprint retrospective
Continuous Integration
An example to understand Continuous Integration
Agile runs on Continuous Integration
Types of project that benefit from Continuous Integration
The best practices of Continuous Integration
Developers should work in their private workspace
Rebase frequently from the mainline

NN = a2 @ (L0 v va = = —
OO OPWWWONNNN_L,OO0O N NOPRBEDRWOWWNN|[= X

NN
-

[il

Table of Contents

Check-in frequently 23
Frequent build 23
Automate the testing as much as possible 23
Don't check-in when the build is broken 24
Automate the deployment 24
Have a labeling strategy for releases 25
Instant notifications 26
How to achieve Continuous Integration 26
Development operations 26
Use a version control system 27
An example to understand VCS 29
Types of version control system 30
Use repository tools 32
Use a Continuous Integration tool 33
Creating a self-triggered build 35
Automate the packaging 35
Using build tools 36
Maven 37
MSBuild 37
Automating the deployments 37
Automating the testing 38
Use static code analysis 39
Automate using scripting languages 40
Perl 40
Test in a production-like environment 40
Backward traceability 41
Using a defect tracking tool 41
Continuous Integration benefits 42
Freedom from long integrations 42
Production-ready features 42
Analyzing and reporting 43
Catch issues faster 43
Spend more time adding features 43
Rapid development 44
Summary 44
Chapter 2: Setting up Jenkins 47
Introduction to Jenkins 47
What is Jenkins made of? 47
Jenkins job 48
Jenkins pipeline 50
Jenkins plugins 51

Lii]

Table of Contents

Why use Jenkins as a Continuous Integration server? 52
It's open source 52
Community-based support 52
Lots of plugins 52
Jenkins has a cloud support 52

Jenkins as a centralized Continuous Integration server 53

Hardware requirements 54

Running Jenkins inside a container 54

Installing Jenkins as a service on the Apache Tomcat server 55
Prerequisites 55
Installing Jenkins along with other services on the Apache Tomcat server 58
Installing Jenkins alone on the Apache Tomcat server 59

Setting up the Jenkins home path 61
Method 1 — configuring the context.xml file 61
Method 2 — creating the JENKINS_HOME environment variable 62

Why run Jenkins inside a container? 63
Conclusion 66

Running Jenkins as a standalone application 67

Setting up Jenkins on Windows 67
Installing Jenkins using the native Windows package 67
Installing Jenkins using the jenkins.war file 75
Changing the port where Jenkins runs 79

Setting up Jenkins on Ubuntu 79
Installing the latest version of Jenkins 80
Installing the latest stable version of Jenkins 80
Changing the Jenkins port on Ubuntu 82

Setting up Jenkins on Fedora 83
Installing the latest version of Jenkins 84
Installing the latest stable version of Jenkins 84
Changing the Jenkins port on Fedora 85

Sample use cases 86
Netflix 86
Yahoo! 87

Summary 87

Chapter 3: Configuring Jenkins 89

Creating your first Jenkins job 90

Adding a build step 95

Adding post-build actions 97

Configuring the Jenkins SMTP server 98

Running a Jenkins job 100

Jenkins build log 101

Jenkins home directory 103

[iii]

Table of Contents

Jenkins backup and restore 105
Creating a Jenkins job to take periodic backup 105
Restoring a Jenkins backup 112

Upgrading Jenkins 114
Upgrading Jenkins running on the Tomcat server 114
Upgrading standalone Jenkins master on Windows 116
Upgrading standalone Jenkins master running on Ubuntu 119

Upgrading to the latest version of Jenkins 119
Upgrading to the latest stable version of Jenkins 120
Upgrading Jenkins to a specific stable version 120
Script to upgrade Jenkins on Windows 123
Script to upgrade Jenkins on Ubuntu 124

Managing Jenkins plugins 126
The Jenkins Plugins Manager 126
Installing a Jenkins plugin to take periodic backup 129
Configuring the periodic backup plugin 132

User administration 136
Enabling global security on Jenkins 137
Creating users in Jenkins 140

Creating an admin user 140
Creating other users 146
Using the Project-based Matrix Authorization Strategy 149
Summary 153
Chapter 4: Continuous Integration Using Jenkins — Part | 155

Jenkins Continuous Integration Design 156

The branching strategy 156
Master branch 156
Integration branch 156
Feature branch 156

The Continuous Integration pipeline 158
Jenkins pipeline to poll the feature branch 158
Jenkins pipeline to poll the integration branch 159

Toolset for Continuous Integration 160

Setting up a version control system 162
Installing Git 163
Installing SourceTree (a Git client) 170
Creating a repository inside Git 172

Using SourceTree 172
Using the Git commands 173
Uploading code to Git repository 174
Using SourceTree 174
Using the Git commands 178

[iv]

Table of Contents

Configuring branches in Git 180
Using SourceTree 181
Using the Git commands 183

Git cheat sheet 185

Configuring Jenkins 186

Installing the Git plugin 186

Installing and configuring JDK 188
Setting the Java environment variables 188
Configuring JDK inside Jenkins 189

Installing and configuring Maven 189
Installing Maven 189
Setting the Maven environment variables 190
Configuring Maven inside Jenkins 191

Installing the e-mail extension plugin 191

The Jenkins pipeline to poll the feature branch 192

Creating a Jenkins job to poll, build, and unit test code on

the feature1 branch 193
Polling version control system using Jenkins 194
Compiling and unit testing the code on the feature branch 195
Publishing unit test results 197
Publishing Javadoc 198
Configuring advanced e-mail notification 199

Creating a Jenkins job to merge code to the integration branch 204
Using the build trigger option to connect two or more Jenkins jobs 205

Creating a Jenkins job to poll, build, and unit test code on

the feature2 branch 207

Creating a Jenkins job to merge code to the integration branch 210

Summary 213
Chapter 5: Continuous Integration Using Jenkins — Part Il 215
Installing SonarQube to check code quality 216

Setting the Sonar environment variables 217

Running the SonarQube application 218

Creating a project inside SonarQube 220

Installing the build breaker plugin for Sonar 222

Creating quality gates 223

Installing SonarQube Scanner 225

Setting the Sonar Runner environment variables 227

Installing Artifactory 228

Setting the Artifactory environment variables 229

Running the Artifactory application 230

Creating a repository inside Artifactory 232

Jenkins configuration 235

Installing the delivery pipeline plugin 236

[v]

Table of Contents

Installing the SonarQube plugin 238
Installing the Artifactory plugin 242
The Jenkins pipeline to poll the integration branch 245
Creating a Jenkins job to poll, build, perform static code analysis,
and integration tests 246
Polling the version control system for changes using Jenkins 247
Creating a build step to perform static analysis 248
Creating a build step to build and integration test code 250
Configuring advanced e-mail notifications 254
Creating a Jenkins job to upload code to Artifactory 259
Configuring the Jenkins job to upload code to Artifactory 261
Creating a nice visual flow for the Continuous Integration pipeline 264
Continuous Integration in action 271
Configuring Eclipse to connect with Git 272
Adding a runtime server to Eclipse 281
Making changes to the Feature1 branch 288
Committing and pushing changes to the Feature1 branch 292
Real-time Jenkins pipeline to poll the Feature1 branch 295
The Jenkins job to poll, build, and unit test code on the Feature1 branch 296
The Jenkins job to merge code to integration branch 300
Real-time Jenkins pipeline to poll the integration branch 302
The Jenkins job to poll, build, perform static code analysis, and perform
integration tests 304
The Jenkins job to upload code to Artifactory 307
Summary 309
Chapter 6: Continuous Delivery Using Jenkins 311
What is Continuous Delivery? 312
Continuous Delivery Design 313
Continuous Delivery pipeline 314
Pipeline to poll the feature branch 314
Pipeline to poll the integration branch 315
Toolset for Continuous Delivery 318
Configuring our testing server 320
Installing Java on the testing server 320
Installing Apache JMeter for performance testing 320
Creating a performance test case 323
Installing the Apache Tomcat server on the testing server 329
Jenkins configuration 334
Configuring the performance plugin 334
Configuring the TestNG plugin 335
Changing the Jenkins/Artifactory/Sonar web URLs 336
Modifying the Maven configuration 337
Modifying the Java configuration 339

[vil

Table of Contents

Modifying the Git configuration 340
Configuring Jenkins slaves on the testing server 342
Creating Jenkins Continuous Delivery pipeline 347
Modifying the existing Jenkins job 348
Modifying the advanced project 348
Modifying the Jenkins job that performs the Integration test and static code analysis 349
Modifying the Jenkins job that uploads the package to Artifactory 352
Creating a Jenkins job to deploy code on the testing server 355
Creating a Jenkins job to run UAT 359
Creating a Jenkins job to run the performance test 367
Creating a nice visual flow for the Continuous Delivery pipeline 371
Creating a simple user acceptance test using Selenium and
TestNG 378
Installing TestNG for Eclipse 379
Modifying the index.jsp file 380
Modifying the POM file 380
Creating a user acceptance test case 384
Generating the testng.xml file 386
Continuous Delivery in action 389
Committing and pushing changes on the feature1 branch 389
Jenkins Continuous Delivery pipeline in action 392
Exploring the job to perform deployment in the testing server 394
Exploring the job to perform a user acceptance test 398
Exploring the job for performance testing 401
Summary 404
Chapter 7: Continuous Deployment Using Jenkins 407
What is Continuous Deployment? 407
How Continuous Deployment is different from Continuous Delivery 409
Who needs Continuous Deployment? 410
Frequent downtime of the production environment with Continuous
Deployment 411
Continuous Deployment Design 412
The Continuous Deployment pipeline 413
Pipeline to poll the feature branch 413
Pipeline to poll the integration branch 414
Toolset for Continuous Deployment 418
Configuring the production server 420
Installing Java on the production server 420
Installing the Apache Tomcat server on the production server 421
Jenkins configuration 424
Configuring Jenkins slaves on the production server 425

[vii]

Table of Contents

Creating the Jenkins Continuous Deployment pipeline 430
Modifying the existing Jenkins job 430
Modifying the Jenkins job that performs the performance test 430
Creating a Jenkins job to merge code from the integration branch
to the production branch 434
Creating the Jenkins job to deploy code to the production server 438
Creating a nice visual flow for the Continuous Delivery pipeline 441
Continuous Deployment in action 446
Jenkins Continuous Deployment pipeline flow in action 446
Exploring the Jenkins job to merge code to the master branch 448
Exploring the Jenkins job that deploys code to production 450
Summary 453
Chapter 8: Jenkins Best Practices 455
Distributed builds using Jenkins 456
Configuring multiple build machines using Jenkins nodes 457
Modifying the Jenkins job 463
Running a build 469
Version control Jenkins configuration 471
Using the jobConfigHistory plugin 471
Let's make some changes 473
Auditing in Jenkins 476
Using the Audit Trail plugin 476
Notifications 480
Installing HipChat 480
Creating a room or discussion forum 483
Integrating HipChat with Jenkins 485
Installing the HipChat plugin 489
Configuring a Jenkins job to send notifications using HipChat 492
Running a build 496
Best practices for Jenkins jobs 497
Avoiding scheduling all jobs to start at the same time 497
Examples 498
Dividing a task across multiple Jenkins jobs 499
Choosing stable Jenkins releases 502
Cleaning up the job workspace 505
Using the Keep this build forever option 506
Jenkins themes 508
Summary 511
Index 513

[viii]

Preface

In the past few years, the agile model of software development has seen a
considerable amount of growth around the world. There is a huge demand for
a software delivery solution that is fast and flexible to frequent amendments,
a specially in the e-commerce sector. As a result, Continuous Integration and
Continuous Delivery methodologies are gaining popularity.

Whether small or big, all types of project are gaining benefits, such as early issue
detection, avoiding bad code into production, and faster delivery, which lead to an
increase in productivity.

This book, Learning Continuous Integration with Jenkins, serves as a step-by-step
guide to setting up Continuous Integration, Continuous Delivery, and Continuous
Deployment systems using hands-on examples. The book is 20% theory and 80%
practical. The book starts by explaining the concepts of Continuous Integration and
its significance in the agile world with a complete chapter dedicated to it. Users
then learn how to configure and set up Jenkins. The first three chapters prepare

the readers for the next important chapters that deal with setting up of

Continuous Integration, Continuous Delivery, and Continuous Deployment.

What this book covers

Chapter 1, Concepts of Continuous Integration, has an account of how some of the
most popular and widely used software development methodologies gave rise to
Continuous Integration. It is followed by an in-depth explanation of the various
requirements and best practices of Continuous Integration.

Chapter 2, Setting up Jenkins, is a step-by-step guide that is all about installing Jenkins
across various platforms and particularly on the Apache Tomcat server.

[ix]

Preface

Chapter 3, Configuring Jenkins, is an overview of how Jenkins looks and feels with an
in-depth explanation of its important constituents. It is followed by a step-by-step
guide to accomplishing some of the basic Jenkins administration tasks.

Chapter 4, Continuous Integration Using Jenkins — Part I, is a step-by-step guide that
takes you through a Continuous Integration Design and the means to achieve it
using Jenkins, in collaboration with some other DevOps tools.

Chapter 5, Continuous Integration Using Jenkins — Part 11, is a continuation of the
previous chapter.

Chapter 6, Continuous Delivery Using Jenkins, is a step-by-step guide that takes you
through a Continuous Delivery Design and the means to achieve it using Jenkins,
in collaboration with some other DevOps tools.

Chapter 7, Continuous Deployment Using Jenkins, explains the difference between
Continuous Delivery and Continuous Deployment. It is followed by a step-by-step
guide that takes you through a Continuous Deployment Design and the means to
achieve it using Jenkins, in collaboration with some other DevOps tools.

Chapter 8, Jenkins Best Practices, is a step-by-step guide to accomplishing distributed
builds using the Jenkins master-slave architecture. It is followed by some practical
examples that depict some of the Jenkins best practices.

What you need for this book

To set up the Jenkins server, you will need a machine with the following
configurations.

Operating systems:

* Windows7/8/9/10
e Ubuntu 14 and above

Software tools (minimum version):

* 7Zip 15.09 beta

* Apache JMeter 2.13

* Apache Tomcat server 8.0.26

* Artifactory 4.3.2 (maximum version for the build breaker plugin to work)
* Atlassian SourceTree 1.6.25

e Git2.6.3

* Java]JDK1.8.0

[x]

Preface

e JavaJRE1.8.0

* Jenkins 1.635

* Maven3.3.9

* Selenium for Eclipse 2.51
* SonarQube 5.1.2

* TestNG for Eclipse 6.8

* Eclipse Mars.1

Hardware requirements:

* A machine with a minimum 1 GB of memory and a multi-core processor

Who this book is for

This book is aimed at readers with little or no previous experience with agile or
Continuous Integration. It serves as a great starting point for everyone who is
new to the field of DevOps and would like to leverage the benefits of Continuous
Integration and Continuous Delivery in order to increase productivity and reduce
delivery time.

Build and release engineers, deployment engineers, DevOps engineers, SCM
(Software Configuration Management) engineers, developers, testers, and project
managers all can benefit from this book.

The readers who are already using Jenkins for Continuous Integration can learn to
take their project to the next level, which is Continuous Delivery. This book discusses
Continuous Integration, Continuous Delivery, and Continuous Deployment using

a Java-based project. Nevertheless, the concepts are still applicable if you are using
other technology setups, such as Ruby on Rails or .NET. In addition to that, the
Jenkins concepts, installation, best practices, and administration, remain the same
irrespective of the technology stack you use.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input and Twitter handles are shown as follows:
"You have make and omake, and also clearmake if you are using IBM Rational
ClearCase as the version control tool."

[xi]

Preface

A block of code is set as follows:

Print a message.
print "Hello, World!\n";
print "Good Morning!\n";

Any command-line input or output is written as follows:
cd /etc/sysconfig/
vi jenkins

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Click on the Install as Windows Service link."

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub. com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

[xii]

www.packtpub.com/authors

Preface

Downloading the example code

You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NS Gk

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

* WIinRAR / 7-Zip for Windows

* Zipeg / iZip / UnRarX for Mac

» 7-Zip / PeaZip for Linux
The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Learning-Continuous-Integration-with-Jenkins. We also

have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

[xiii]

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins
https://github.com/PacktPublishing/Learning-Continuous-Integration-with-Jenkins
https://github.com/PacktPublishing/

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[xiv]

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Concepts of Continuous
Integration

Software technology has evolved much like life on Earth. In the beginning, websites
were static and programming languages were primitive, just like those simple
multicellular organisms in the ancient oceans. In those times, software solutions were
intended only for a few large organizations. Then, in the early 90s, the popularity

of the Internet led to a rapid growth in various new programming languages and
web technologies. And all of a sudden, there was a Cambrian-like explosion in the
domain of information technology that brought up diversity in software technologies
and tools. The growth of the Internet, powered by dynamic websites running on
HTML languages, changed the way information was displayed and retrieved.

This continues to date. In recent years, there has been an immense demand for
software solutions in many big and small organizations. Every business wants

to venture its product online, either through websites or apps. This huge need

for economical software solutions has led to the growth of various new software
development methodologies that make software development and its distribution
quick and easy. An example of this is the extreme programming (XP), which
attempted to simplify many areas of software development.

Large software systems in the past relied heavily on documented methodologies,
such as the waterfall model. Even today, many organizations across the world
continue to do so. However, as software engineering continues to evolve, there is a
shift in the way software solutions are being developed and the world is going agile.

[11]

Concepts of Continuous Integration

Understanding the concepts of Continuous Integration is our prime focus in the
current chapter. However, to understand Continuous Integration, it is first important
to understand the prevailing software engineering practices that gave birth to

it. Therefore, we will first have an overview of various software development
processes, their concepts, and implications. To start with, we will first glance through
the agile software development process. Under this topic, we will learn about the
popular software development process, the waterfall model, and its advantages and
disadvantages when compared to the agile model. Then, we will jump to the Scrum
framework of software development. This will help us to answer how Continuous
Integration came into existence and why it is needed. Next, we will move to the
concepts and best practices of Continuous Integration and see how this helps projects
to get agile. Lastly, we will talk about all the necessary methods that help us realize
the concepts and best practices of Continuous Integration.

The agile software development process

The name agile rightly suggests quick and easy. Agile is a collection of software
development methodologies in which software is developed through collaboration
among self-organized teams. Agile software development promotes adaptive
planning. The principles behind agile are incremental, quick, and flexible software
development.

For most of us who are not familiar with the software development process
itself, let's first understand what the software development process or software
development life cycle is.

Software development process, software development methodology,
= and software development life cycle have the same meaning.

Software development life cycle

Software development life cycle, also sometimes referred to as SDLC in brief, is
the process of planning, developing, testing, and deploying software. Teams follow
a sequence of phases, and each phase uses the outcome of the previous phase, as
shown in the following diagram:

[2]

Chapter 1

Requirement
Analysis

Evolution Design

Testing Implementation

Let's understand these phases in detail.

Requirement analysis

First, there is a requirement analysis phase: here, the business teams, mostly
comprising business analysts, perform a requirement analysis of the business needs.
The requirements can be internal to the organization or external from a customer.
This analysis includes finding the nature and scope of the problem. With the
gathered information, there is a proposal either to improve the system or to create a
new one. The project cost is also decided and benefits are laid out. Then, the project
goals are defined.

Design

The second phase is the design phase. Here, the system architects and the system
designers formulate the desired features of the software solution and create a project
plan. This may include process diagrams, overall interfaces, layout designs, and a
huge set of documentation.

Implementation

The third phase is the implementation phase. Here, the project manager creates and
assigns tasks to the developers. The developers develop the code depending on the

tasks and goals defined in the design phase. This phase may last from a few months
to a year, depending on the project.

[31]

Concepts of Continuous Integration

Testing

The fourth phase is the testing phase. Once all the decided features are developed,
the testing team takes over. For the next few months, there is a thorough testing of
all the features. Every module of the software is brought into one place and tested.
Defects are raised if any bugs or errors erupt while testing. In the event of failures,
the development team quickly actions on it. The thoroughly tested code is then
deployed into the production environment.

Evolution

The last phase is the evolution phase or the maintenance phase. Feedback from
the users/customers is analyzed, developed, tested, and published in the form of
patches or upgrades.

The waterfall model of software development

One of the most famous and widely used software development processes is the
waterfall model. The waterfall model is a sequential software development process.
It was derived from the manufacturing industry. One can see a highly structured
flow of processes that run in one direction. In those times, there were no software
development methodologies, and the only thing the developers could have
imagined was the production line process, which was simple to adapt for

software development. The following diagram illustrates the sequence steps

in the waterfall model:

[4]

Chapter 1

Requirement
Analysis

\—» System Design
L Implementation
\—» Testing
\—» Development
\—» Maintenance

The waterfall approach is simple to understand. The steps involved are similar to the
ones discussed for the software development life cycle.

First, there is the requirement analysis phase followed by the designing phase. There
is considerable time spent on the analysis and the designing part. And once it's over,
there are no further additions or deletions. In short, once the development begins,
there is no modification allowed in the design.

Then, comes the implementation phase where the actual development takes place.
The development cycle can range from 3 months to 6 months. During this time,

the testing team is usually free. Once the development cycle is completed, a whole
week's time is planned for performing the integration and release of the source code
in the testing environment. During this time, many integration issues pop up and are
fixed at the earliest opportunity.

[51]

Concepts of Continuous Integration

Once the testing starts, it goes on for another three months or more, depending on
the software solution. After the testing completes successfully, the source code is
deployed in the production environment. For this, again a day or two is planned to
carry out the deployment. There is a possibility that some deployment issues may

pop up-
After this, the software solution goes live. The teams get feedback and may also
anticipate issues. The last phase is the maintenance phase. In this phase, the

development team works on the development, testing, and release of software
updates and patches, depending on the feedback and bugs raised by the customers.

There is no doubt that the waterfall model has worked remarkably well for decades.
However, flaws did exist, but they were simply ignored for a long time because, way
back then, software projects had an ample amount of time and resources to get the
job done.

However, looking at the way software technologies have changed in the past
few years we can easily say that this model won't suit the requirements of the
current world.

Disadvantages of the waterfall model

The disadvantages of the waterfall model are:
* Working software is produced only at the end of the software development
life cycle, which lasts for a year or so in most of the projects.
* There is a huge amount of uncertainty.

* This model is not suitable for projects based on object-oriented programming
languages, such as Java or .NET.

* This model is not suitable for projects where changes in the requirements are
frequent. For example, e-commerce websites.

* Integration is done after the complete development phase is over. As a result,
teams come to know about the integration issues at a very later stage.

* There is no backward traceability.

* It's difficult to measure progress within stages.

[6]

Chapter 1

Who needs the waterfall model?

By looking at the disadvantages of the waterfall model, we can say that it's mostly
suitable for projects where:

The requirements are well-documented and fixed.

There is enough funding available to maintain a management team,
testing team, development team, build and release team, deployment
team, and so on.

The technology is fixed and not dynamic.

There are no ambiguous requirements. And most importantly, they don't
pop up during any other phase apart from the requirement analysis phase.

Agile to the rescue

The agile software development process is an alternative to the traditional software
development processes, as discussed earlier. The following are the 12 principles on
which the agile model is based:

Customer satisfaction by early and continuous delivery of useful software
Welcome changing requirements, even late in development

Working software is delivered frequently (in weeks rather than months)
Close daily cooperation between business people and developers

Projects are built around motivated individuals, who should be trusted
Face-to-face conversation is the best form of communication (co-location)
Working software is the principal measure of progress

Sustainable development that is able to maintain a constant pace
Continuous attention to technical excellence and good design

Simplicity — the art of maximizing the amount of work not done —is essential
Self-organizing teams

Regular adaptation to changing circumstances

The 12 agile principles are taken from
s http://www.agilemanifesto.org.

The 12 principles of agile software development clearly indicate the expectation of
the current software industry and its advantages over the waterfall model.

[71

http://www.agilemanifesto.org

Concepts of Continuous Integration

How does the agile software development process
work?

In the agile software development process, the whole software is broken into

many features or modules. These features or modules are delivered in iterations.
Each iteration lasts for 3 weeks and involves cross-functional teams that work
simultaneously in various areas, such as planning, requirements analysis, design,
coding, unit testing, and acceptance testing. As a result, there is no single person
sitting idle at any given point of time whereas in the waterfall model, while the
development team is busy developing the software, the testing team, the production
support team and everyone else is either idle or underutilized.

Integrate & Test -Q
Release
9 @

Develop Feature 2
Review Yes D> @

@ Release to Customer
Integrate & Test °

Develop Feature 1

e C
Define high level Reqliifément Incorporate changes

Re-prioritise

You can see, in the preceding diagram, that there is no time spent on the requirement
analysis or design. Instead, a very high-level plan is prepared, just enough to outline
the scope of the project.

[8]

Chapter 1

The team then goes through a series of iterations. Iterations can be classified as time
frames, each lasting for a month, or even a week in some mature projects. In this
duration, a project team develops and tests features. The goal is to develop, test, and
release a feature in a single iteration. At the end of the iteration, the feature goes for
a demo. If the clients like it, then the feature goes live. If it gets rejected, the feature is
taken as a backlog, reprioritized and again worked upon in the consecutive iteration.

There is also a possibility for parallel development and testing. In a single iteration,
you can develop and test more than one feature in parallel.

Let's take a look at some of the advantages of the agile software development
process:

Functionality can be developed and demonstrated rapidly: In an agile
process, the software project is divided on the basis of features and each
feature can be called as a backlog. The idea is to develop a single or a set of
features right from its conceptualization until its deployment, in a week or a
month. This puts at least a feature or two on the customer's plate, which they
can start using.

Resource requirement is less: In agile, there is no separate development
team and testing team. There is neither a build or release team or deployment
team. In agile, a single project team contains around eight members, and each
individual in the team is capable of doing everything. There is no distinction
among the team members.

Promotes teamwork and cross training: As mentioned earlier, since there is
a small team of about eight members, the team members in turn switch their
roles and learn about each other's experience.

Suitable for projects where requirements change frequently: In the agile
model of software development, the complete software is divided into
features and each feature is developed and delivered in a short span of time.
Hence, changing the feature, or even completely discarding it, doesn't affect
the whole project.

Minimalistic documentation: This methodology primarily focuses on
delivering working software quickly rather than creating huge documents.
Documentation exists, but it's limited to the overall functionality.

Little or no planning required: Since features are developed one
after the other in a short duration of time, hence, there is no need for
extensive planning.

Parallel development: An iteration consists of one or more features that
develop in a sequence or even in parallel.

[o]

Concepts of Continuous Integration

The Scrum framework

One of the widely-used agile software development methodologies is the Scrum
framework. Scrum is a framework used to develop and sustain complex products
that are based on the agile software development process. It is more than a process;
it's a framework with certain roles, tasks, and teams. Scrum was written by Ken
Schwaber and Jeff Sutherland; together they created the Scrum guide.

In a Scrum framework, the development team decides on how a feature needs to be
developed. This is because the team knows best how to solve the problem they are
presented with. I assume that most of the readers are happy after reading this line.

Scrum relies on a self-organizing and cross-functional team. The Scrum team is self-
organizing; hence, there is no team leader who decides which person will do which
task or how a problem will be solved. In Scrum, a team is cross-functional, which
means everyone takes a feature from an idea to implementation.

Important terms used in the Scrum framework

The following are the important terms used in the Scrum framework:

* Sprint: Sprint is a time box during which a usable and potentially releasable
product increment is created. A new sprint starts immediately after the
conclusion of the previous sprint. A sprint may last for 2 weeks to 1 month,
depending on the projects' command over Scrum.

* Product backlog: The product backlog is a list of all the required features
in a software solution. This list is dynamic, that is, every now and then the
customers or team members add or delete items to the product backlog.

* Sprint backlog: The sprint backlog is the set of product backlog items
selected for the sprint.

* Increment: The increment is the sum of all the product backlog items
completed during a sprint and the value of the increments of all the
previous sprints.

* The development team: The development team does the work of delivering
a releasable set of features named increment at the end of each sprint. Only
members of the development team create the increment. Development teams
are empowered by the organization to organize and manage their own work.
The resulting synergy optimizes the development team's overall efficiency
and effectiveness.

[10]

Chapter 1

* The product owner: The product owner is a mediator between the Scrum
team and everyone else. He is the face of the Scrum team and interacts with
customers, infrastructure teams, admin teams, and everyone involved in the
Scrum, and so on.

* The Scrum Master: The Scrum Master is responsible for ensuring that Scrum

is understood and enacted. Scrum Masters do this by ensuring that the
Scrum team follows Scrum theory, practices, and rules.

How does Scrum work?

The product owner, the Scrum master, and the Scrum team together follow a set of
stringent procedures to quickly deliver the software features. The following diagram
explains the Scrum development process:

]

(A
(A
(A
[Wi
W[
=
(A
(A

Sprint Planning

A

Sprint Backlog

TR

5

\ C,, -

Sprint 2-4 weeks

h

NS,

Shipping Features

h

©

Sprint Review & Retrospective Meeting

[11]

Concepts of Continuous Integration

Let's take a look at some of the important aspects of the Scrum software development
process, which the team goes through.

Sprint planning

Sprint planning is an opportunity for the Scrum team to plan the features in the
current sprint cycle. The plan is mainly created by the developers. Once the plan
is created, it is explained to the Scrum master and the product owner. The sprint
planning is a time-boxed activity, and it is usually around 8 hours in total for a
1-month sprint cycle. It is the responsibility of the Scrum Master to ensure that
everyone participates in the sprint planning activity, and he is also the one to
keep it within the time box.

In the meeting, the development team takes into consideration the following items:

* Number of product backlogs to be worked on (both new and the old ones
coming from the last sprint)

* The teams' performance in the last sprint

* Projected capacity of the development team

Sprint cycle

During the sprint cycle, the developers simply work on completing the backlogs
decided in the sprint planning. The duration of a sprint may last from two weeks to
one month, depending on the number of backlogs.

Daily scrum meeting

This activity happens on a daily basis. During the scrum meeting, the development
team discusses what was accomplished yesterday and what will be accomplished
today. They also discuss the things that are stopping them from achieving their goal.
The development team does not attend any other meetings or discussions apart from
the Scrum meeting,.

Monitoring sprint progress

The daily scrum is a good opportunity for a team to measure the progress of the
project. The team can track the total work that is remaining, and using it, they can
estimate the likelihood of achieving the sprint goal.

[12]

Chapter 1

The sprint review

The sprint review is like a demo to the customers regarding what has been
accomplished and what they were unable to accomplish. The development team
demonstrates the features that have been accomplished and answers the questions
based on the increment. The product owner updates the product backlog list status till
date. The product backlog list may be updated, depending on the product performance
or usage in the market. The sprint review is a four-hour activity in total for a one
month sprint.

Sprint retrospective

In this meeting, the team discusses the things that went well and the things that
need improvement. The team then decides the points on which it has to improve to
perform better in the upcoming sprint. This meeting usually occurs after the sprint
review and before the sprint planning.

Continuous Integration

Continuous Integration is a software development practice where developers
frequently integrate their work with the project's integration branch and create
a build.

Integration is the act of submitting your personal work (modified code) to the
common work area (the potential software solution). This is technically done

by merging your personal work (personal branch) with the common work area
(Integration branch). Continuous Integration is necessary to bring out issues that
are encountered during the integration as early as possible.

This can be understood from the following diagram, which depicts various issues
encountered during a software development lifecycle. I have considered a practical
scenario wherein I have chosen the Scrum development model, and for the sake

of simplicity, all the meeting phases are excluded. Out of all the issues depicted

in the following diagram, the following ones are detected early when Continuous
Integration is in place:

* Build failure (the one before integration)
* Integration issues

* Build failure (the one after integration)

[13]

Concepts of Continuous Integration

In the event of the preceding issues, the developer has to modify the code in
order to fix it. A build failure can occur either due to an improper code or due to a
human error while doing a build (assuming that the tasks are done manually). An
integration issue can occur if the developers do not rebase their local copy of code
frequently with the code on the Integration branch.

Sprlnt Feature A

leegralion Issues J

[Build Failure l
- ———

¢ Build & Package
—
LDeponment Issue J

ot ¢ Deploy in Testing Environment

—"
[_Testing failure due to Code] - &

.|
ITest failure due to deployment I *Ta:sﬁng

k_._?@

¢ Release to Customer

=
v

Feature B

=

In the preceding diagram, I have considered only a single testing

environment for simplicity. However, in reality, there can be as

many as three to four testing environments.

An example to understand Continuous
Integration

To understand Continuous Integration better, let's take the previous example a bit
forward, this time at a more granular level.

[14]

Chapter 1

In any development team, there are a number of developers working on a set of files
at any given point of time. Imagine that the software code is placed at a centralized
location using a version control system. And developer "A" creates a branch for
himself to work on a code file that prints some lines. Let's say the code when
compiled and executed, prints "Hello, World".

Print a message.
Print "Hello, World\n";

After creating a branch, developer "A" checks out the file and modifies the
following code:

Print a message.
Print "Hello, Readers\n";

He then checks in the file, and after check-in, he performs a build. The code is
compiled, and the unit testing results show positive.

Nevertheless, if the unit tests were to fail, the developer would have returned to

the code, checked for errors, modified the code, built it again and again until the
compilation and unit test show positive. This following diagram depicts the scenario
that we discussed so far.

Integration Branch

e

Developer "A" Personal Work Area # Print a message.
- print "Hello, Worldhn";
.

©

' |#Printa message.
' | print "Hello, Readershn®;
Al
Il %

Print a message. -
print "Hello, Readershn®; 1

Check-n |
Hello, Readers < {é} @.

[15]

Concepts of Continuous Integration

Assume that our developer "A" gets busy with some other task and simply forgets
to deliver his code to the Integration branch or he plans to do it later. While the
developer is busy working in isolation, he is completely unaware of the various
changes happening to the same code file on the Integration branch. There is a
possibility that some other developer, say developer "B," has also created a
private branch for himself and is working on the same file.

Integration Branch

N

Print a message.
print "Hello, Worldhn™; Developer "B" Personal Wiork Area

Print a message.
print "Hello, Worldln";

print *Good Morninghv'; ||

VM. # Print a message.
' print "Hello, Worldl'n";
print "Good Morninghn";

| Checkein Hello, World!
> Good Morming!

In the preceding diagram, we can see how developer "B" has changed the same file
by adding the following line of code:

Print a message.
print "Hello, World!\n";
print "Good Morning!\n";

[16]

Chapter 1

After the modification, developer "B" compiles and unit tests the code, and then, he
integrates the code on the Integration branch, thus creating a new version "2".

Now after a week of time, at the end of the sprint, the developer "A" realizes that he
has not integrated his code into the Integration branch. He quickly makes an attempt
to, but to his surprise, he finds merge issues (in most cases, the merge is successful,
but the code on the Integration branch fails to compile due to an integration issue).

Integration Branch

.

Print a message.
Developer "B" Personal Work Area print "Hello, World\n";

- o

Print a message.
print "Hello, Readershn®;

Print a message.
print "Hello, Worldhn®;
print "Good Morninghn";

error while
mergell!

[17]

Concepts of Continuous Integration

To resolve this, he does a rebase with the Integration branch (he updates his private
work area with that of the Integration Branch) and again tries to merge, as shown in
the following diagram:

Integration Branch

.

Developer "A" Personal Work Area |4 priny a message.
] print "Hello, Worldhn";
.

©

Print a message.
Print a message. print "Hello, Worldhn";

print "Hello, Readersin®; print "Good Morning!";

@ Developer B's changes

Print a message.
print "Hello, Readersin®;

(\/; print "Good Morning!";

Hello, Readers! <]
Good Morning!

oo Merge > Hello, Readers!
Good Morning!

Buid

What do we make out of this? If developer "A" had immediately rebased and
integrated his changes with the changes on the Integration branch (Continuous
Integration), then he would have known about the merge issues far in advance
and not at the end of the sprint. Therefore, developers should integrate their code
frequently with the code on the Integration branch.

Since you're integrating frequently, there is significantly less back-tracking to
discover where things went wrong.

If you don't follow a continuous approach, you'll have longer periods between
integrations. This makes it exponentially more difficult to find and fix problems.
Such integration problems can easily knock a project off schedule or can even cause
it to fail altogether.

[18]

Chapter 1

Agile runs on Continuous Integration

The agile software development process mainly focuses on faster delivery, and
Continuous Integration helps it in achieving that speed. Yet, how does Continuous
Integration do it? Let's understand this using a simple case.

Developing a feature may involve a lot of code changes, and between every code
change, there can be a number of tasks, such as checking in the code, polling the
version control system for changes, building the code, unit testing, integration,
building on integrated code, packaging, and deployment. In a Continuous
Integration environment, all these steps are made fast and error-free using
automation. Adding notifications to it makes things even faster. The sooner the
team members are aware of a build, integration, or deployment failure, the quicker
they can act upon it. The following diagram clearly depicts all the steps involved in
code changes:

r g
”

Code Change 1 , I Code change 2

[

Y

Automatic Integration

K

z,,~ Codeing

Build on Integrated code

A . 0
o ¥ ™

_'.f

-------- =, - Polling vcs for check-in

]

Oe@-s B

Check-in

000
OO -
000

A

Unit Testing with notification

(]

i

|
i =, Deployment
]
|

u

:,, - Build with notification =~ Packaging

In this way, the team quickly moves from feature to feature. We can safely conclude
that the "agility" of an agile software development is made possible through
Continuous Integration.

[19]

Concepts of Continuous Integration

Types of project that benefit from Continuous
Integration

The amount of code written for the embedded systems present inside a car is more
than that present inside a fighter jet. In today's world, embedded software is inside
every product, modern or traditional. Cars, TVs, refrigerators, wrist watches, and
bikes all have little or more software dependent features. Consumer products are
becoming smarter day by day. Nowadays, we can see a product being marketed
more using its smart and intelligent features than its hardware capability. For
example, an air conditioner is marketed by its wireless control features, TVs are
being marketed by their smart features, such as embedded web browsers, and so on.

The need to market new products has increased the complexity of products. This
increase in software complexity has brought agile software development and
Continuous Integration methodologies into the limelight. Though, there were times
when agile software development was used by a team of not more than 30-40 people,
working on a simple project. Almost all types of projects benefit from Continuous
Integration. Mostly the web-based projects, for example, e-commerce websites and
mobile phone apps.

Continuous Integration, automation, and agile are mostly thought to be used in
projects that are based on Java, .NET, and Ruby on Rails. The only place where
you will see it's not used are the legacy systems. However, even they are going
agile. Projects based on SAS, Mainframe, and Perl are all now using Continuous
Integration in some ways.

The best practices of Continuous
Integration

Simply having a Continuous Integration tool doesn't mean Continuous Integration
is achieved. A considerable amount of time needs to be spent in the configuration
of configuring Integration tool.

A tool such as Jenkins works in collaboration with many other tools to achieve
Continuous Integration. Let's take a look at some of the best practices of
Continuous Integration.

[20]

Chapter 1

Developers should work in their private
workspace

In a Continuous Integration world, working in a private work area is always advisable.
The reason is simple: isolation. One can do anything on their private branch or to
simply say with their private copy of the code. Once branched, the private copy
remains isolated from the changes happening on the mainline branch. And in this way,
developers get the freedom to experiment with their code and try new stuff.

If the code on developer A's branch fails due to some reason, it will never affect the
code present on the branches belonging to the other developers. Working in a private
workspace either through branching or through cloning repos is a great way to
organize your code.

For example, let's assume that a bug fix requires changes to be made to the 2. java,
B.java, and C.java files. So, a developer takes the latest version of the files and
starts working on them. The files after modification are let's say version 56 of the
A.java file, version 20 of the B. java file, and version 98 of the C.java file. The
developer then creates a package out of those latest files and performs a build and
then performs a test. The build and testing run successfully and everything is good.

Now consider a situation where after several months, another bug requires the same
changes. The developer will usually search for the respective files with particular
versions that contain the code fix. However, these files with the respective versions
might have been lost in the huge oceans of versions by now.

Instead, it would have been better if the file changes were brought to a separate
branch long back (with the branch name reflecting the defect number). In this way, it
would have been easy to reproduce the fix using the defect number to track the code
containing the required fix.

Rebase frequently from the mainline

We all know about the time dilation phenomena (relativity). It is explained with a
beautiful example called the twin paradox, which is easy to understand but hard to
digest. I have modified the example a little bit to suit our current topic. The example
goes like this; imagine three developers: developers A, B, and C. Each developer is
sent into space in his own spacecraft that travels at the speed of light. All are given
atomic clocks that show exactly the same time. Developer B is supposed to travel to
planet Mars to sync the date and time on a computer, which is on Mars. Developer C
is supposed to travel to Pluto for a server installation and to sync the clock with that
of Earth.

[21]

Concepts of Continuous Integration

Developer A has to stay on Earth to monitor the communication between the server
that is present on Earth with the servers on Mars and Pluto. So, all start at morning
6 AM one fine day.

After a while, developers B and C finish their jobs and return to Earth. On meeting
each other, to their surprise, they find their clocks measuring a different time (of
course, they find each other aged differently). They all are totally confused as to
how this happened. Then, developer A confirms that all the three servers that are
on Earth, Mars, and Pluto, respectively are not in sync.

Then, developer A recalls that while all the three atomic clocks were in sync back
then on Earth, they forgot to consider the time dilation factor. If they would have
included it keeping in mind the speed and distance of travel, the out-of-sync issue
could have been avoided.

This is the same situation with developers who clone the Integration branch and
work on their private branch, each one indulging in their own assignment and at
their own speed. At the time of merging, each one will definitely find their code
different from the others and the Integration branch, and will end up with
something called as Merge Hell. The question is how do we fix it? The

answer is frequent rebase.

In the previous example (developers with the task of syncing clocks on computers
located across the solar system), the cause of the issue was to neglect the "time
dilation factor". In the latter example (developers working on their individual
branch), the cause of the issue was neglecting the frequent rebase. Rebase is nothing
but updating your private branch with the latest version on the Integration branch.

While working on a private repository or a private branch surely has its advantages;
it also has the potential to cause lots of merge issues. In a software development
project containing 10 to 20 developers, each developer working by creating a private
clone of the main repository completely changes the way the main repository looked
over time.

In an environment where code is frequently merged and frequently rebased, such
situations are rare. This is the advantage of using continuous integration. We
integrate continuously and frequently.

The other situations where rebasing frequently helps are:

* You branched out from a wrong version of the integration branch, and now
you have realized that it should have been version 55 and not 66.

* You might want to know the merge issues that occur when including code
developed on some other branch belonging to a different developer.

[22]

Chapter 1

* Also, too much merging messes up the history. So rather than frequently
merging, it's better to rebase frequently and merge less. This trick also works
in avoiding merge issues.

* While frequent rebase means less frequent merges on the Integration branch,
which, in turn, means less number of versions on the Integration branch and
more on the private, there is an advantage. This makes the integration clear
and easy to follow.

Check-in frequently

While rebase should be frequent, so should check-in, at least once a day on his/

her working branch. Checking in once a week or more is dangerous. The one whole
week of code that is not checked-in runs the risk of merge issues. And these can

be tedious to resolve. By committing or merging once a day, conflicts are quickly
discovered and can be resolved instantly.

Frequent build

Continuous Integration tools need to make sure that every commit or merge is built
to see the impact of the change on the system. This can be achieved by constantly
polling the Integration branch for changes. And if changes are found, build and
test them. Afterwards quickly share the results with the team. Also, builds can run
nightly. The idea is to get instant feedback on the changes they have made.

Automate the testing as much as possible

While a continuous build can give instant feedback on build failures, continuous
testing, on the other hand, can help in quickly deciding whether the build is ready

to go to the production. We should try to include as many test cases as we can, but
this again increases the complexity of the Continuous Integration system. Tests that
are difficult to automate are the ones that reflect the real-world scenarios closely.
There is a huge amount of scripting involved and so the cost of maintaining it rises.
However, the more automated testing we have, the better and sooner we get to know
the results.

[23]

Concepts of Continuous Integration

Don’'t check-in when the build is broken

How can we do that? The answer is simple; before checking in your code, perform a
build on your local machine, and if the build breaks, do not proceed with the check-
in operation. There is another way of doing it. The version control system can be
programmed to immediately trigger a build using the Continuous Integration tool,
and if the tool returns positive results, only then the code is checked-in. Version
control tools, such as TFS have a built in feature called a gated check-in mechanism
that does the same.

There are other things that can be added to the gated check-in mechanism. For
example, you can add a step to perform a static code analysis on the code. This again
can be achieved by integrating the version control system with the Continuous
Integration tool, which again is integrated with the tool that performs a static code
analysis. In the upcoming chapters, we will see how this can be achieved using
Jenkins in collaboration with SonarQube.

Automate the deployment

In many organizations, there is a separate team to perform deployments. The process
is as follows. Once the developer has successfully created a build, he raises a ticket
or composes a mail asking for a deployment in the respective testing environment.
The deployment team then checks with the testing team if the environment is free.

In other words, can the testing work be halted for a few hours to accommodate a
deployment? After a brief discussion, a certain time slot is decided and the package
is deployed.

The deployment is mostly manual and there are many manual checks that take

the time. Therefore, for a small piece of code to go to the testing environment, the
developer has to wait a whole day. And if for some reasons, the manual deployment
fails due to a human error or due to some technical issues, it takes a whole day in
some cases for the code to get into the testing area.

This is a painful thing for a developer. Nevertheless, this can be avoided by carefully
automating the deployment process. The moment a developer tries to check-in

the code, it goes through an automated compilation check, then it goes through an
automated code analysis, and then it's checked-in to the Integration branch. Here the
code is again picked along with the latest code on the Integration branch and then
built. After a successful build, the code is automatically packaged and deployed in
the testing environment.

[24]

Chapter 1

Have a labeling strategy for releases

In my experience, some of the best practices of Continuous Integration are the same
as those of software configuration management. For example, labels and baselines.
While both are similar technically, they are not the same from the usage perspective.
Labeling is the task of applying a tag to a particular version of a file or a set of files.
We take the same concept a little bit further. For example, what if I apply a label to
particular versions of all the files? Then, it would simply describe a state of the whole
system. A version of the whole collective system. This is called a baseline. And why
it is important?

Labels or baselines have many advantages. Imagine that a particular version of your
private code fixed a production issue, say "defect number 1234". You can label that
version on your private code as the defect number for later use. Labels can also be
used to mark sprints, releases, and hotfixes.

The one that is used widely is shown in the following image:

Minor Number/Bug Fix Number

A
R XX . XX.
v
Major Number/ Release Number
v
Hot-fix Number

Here, the first two digits are the release numbers. For example, 00 can be beta, 01
can be alpha, and 02 can represent the commercial release. The next two digits are
the bug fix numbers. Let's say release 02.00.00 is in production and few bugs or
improvements arise, then the developer who is working on fixing those issues can
name his branch or label his code as 02.01.00.

[25]

Concepts of Continuous Integration

Similarly, consider another scenario, where the release version in production

is 03.02.00, and all of a sudden something fails and the issue needs to be fixed
immediately. Then, the release containing the fix can be labeled as 03.02.01, which
says that this was a hotfix on 03.02.00.

Instant notifications

They say communication is incomplete without feedback. Imagine a Continuous
Integration system that has an automated build and deployment solution, a state-
of-the-art automated testing platform, a good branching strategy, and everything
else. However, it does not have a notification system that automatically emails or
messages the status of a build. What if a nightly build fails and the developers are
unaware of it?

What if you check-in code and leave early, without waiting for the automated build
and deployment to complete? And the next day you find that the build failed due to
a simple issue, which occurred just 10 minutes after you departed from the office.

If by some chance, you would have been informed through an SMS popping upon
your mobile phone, then you could have fixed the issue.

Therefore, instant notifications are important. All the Continuous Integration

tools have it, including Jenkins. It is good to have notifications of build failures,
deployment failures, and testing results. We will see in the upcoming chapters how
this can be achieved using Jenkins and the various options Jenkins provides to make
life easy.

How to achieve Continuous Integration

Implementing Continuous Integration involves using various DevOps tools.
Ideally, a DevOps engineer is responsible for implementing Continuous Integration.
But, who is a DevOps engineer? And what is DevOps?

Development operations

DevOps stands for development operations, and the people who manage these
operations are called DevOps engineers. All the following mentioned tasks fall
under development operations:

* Build and release management

* Deployment management

* Version control system administration

[26]

Chapter 1

* Software configuration management

* All sorts of automation

* Implementing continuous integration
* Implementing continuous testing

* Implementing continuous delivery

* Implementing continuous deployment

* Cloud management and virtualization

I assume that the preceding tasks need no explanation. A DevOps engineer
accomplishes the previously mentioned tasks using a set of tools; these tools
are loosely called DevOps tools (Continuous Integration tools, agile tools,
team collaboration tools, defect tracking tools, continuous delivery tools, cloud
management tools, and so on).

A DevOps engineer has the capability to install and configure the DevOps tools to
facilitate development operations. Hence, the name DevOps. Let's see some of the
important DevOps activities pertaining to Continuous Integration.

Use a version control system

This is the most basic and the most important requirement to implement Continuous
Integration. A version control system, or sometimes it's also called a revision
control system, is a tool used to manage your code history. It can be centralized

or distributed. Two of the famously centralized version control systems are SVN
and IBM Rational ClearCase. In the distributed segment, we have tools such as Git.
Ideally, everything that is required to build software must be version controlled. A
version control tool offers many features, such as labeling, branching, and so on.

When using a version control system, keep the branching to the minimum. Few
companies have only one main branch and all the development activities happening
on that. Nevertheless, most companies follow some branching strategies. This is
because there is always a possibility that part of a team may work on a release and
others may work on another release. At other times, there is a need to support older
release versions. Such scenarios always lead companies to use multiple branches.

For example, imagine a project that has an Integration branch, a release branch, a
hotfix branch, and a production branch. The development team will work on the
release branch. They check-out and check-in code on the release branch. There can
be more than one release branch where development is running in parallel. Let's say
these are sprint 1 and sprint 2.

[27]

Concepts of Continuous Integration

Once sprint 2 is near completion (assuming that all the local builds on the sprint 2
branch were successful), it is merged to the Integration branch. Automated builds
run when there is something checked-in on the Integration branch, and the code
is then packaged and deployed in the testing environments. If the testing passes
with flying colors and the business is ready to move the release to production,
then automated systems take the code and merge it with the production branch.

Production Branch
Integration Branch Hot Fix Branch -

N
o =
Sprint 1 Branch Sprint 2 Branch
[
U

1

E R02.00.00

'F'.'.,;;a,;; e O e T e

Typical branching strategies

From here, the code is then deployed in production. The reason for maintaining

a separate branch for production comes from the desire to maintain a neat code
with less number of versions. The production branch is always in sync with the
hotfix branch. Any instant fix required on the production code is developed on

the hotfix branch. The hotfix changes are then merged to the production as well

as the Integration branch. The moment sprint 1 is ready, it is first rebased with the
Integration branch and then merged into it. And it follows the same steps thereafter.

[28]

Chapter 1

An example to understand VCS

Let's say I add a file named profile.txt to the version control with some initial
details, such as the name, age, and employee ID.

To modify the file, I have to check out the file. This is more like reserving the file for
edit. Why reserve? In a development environment, a single file may be used by many
developers. Hence, in order to facilitate an organized use, we have the option to
reserve a file using the check-out operation. Let's assume that I do a check-out

on the file and do some modifications by adding another line.

Sprint 1 Branch

e il

Integration Branch

—

Name: Nikhil

Age: 28
Emp ID: 1234

Marme: Nikhil

Age: 28
Emp ID: 1234
Location: Bangalore

Name: Mikhil

Age: 28
Emp ID: 1234
' |Location: Bangalore

After the modification, I perform a check-in operation. The new version contains the
newly added line. Similarly, every time you or someone else modifies a file, a new

version gets created.

[29]

Concepts of Continuous Integration

Types of version control system

We have already seen that a version control system is a tool used to record changes
made to a file or set of files over time. The advantage is that you can recall specific
versions of your file or a set of files. Almost every type of file can be version
controlled. It's always good to use a Version Control System (VCS) and almost
everyone uses it nowadays. You can revert an entire project back to a previous
state, compare changes over time, see who last modified something that might be
causing a problem, who introduced an issue and when, and more. Using a VCS also
generally means that if you screw things up or lose files, you can easily recover.

Looking back at the history of version control tools, we can observe that they can be
divided into three categories:

* Local version control systems
* Centralized version control systems

* Distributed version control systems

Centralized version control systems

Initially, when VCS came into existence some 40 years ago, they were mostly
personal, like the one that comes with Microsoft Office Word, wherein you can
version control a file you are working on. The reason was that in those times
software development activity was minuscule in magnitude and was mostly done
by individuals. But, with the arrival of large software development teams working
in collaboration, the need for a centralized VCS was sensed. Hence, came VCS tools,
such as Clear Case and Perforce. Some of the advantages of a centralized VCS are
as follows:

* All the code resides on a centralized server. Hence, it's easy to administrate
and provides a greater degree of control.

* These new VCS also bring with them some new features, such as labeling,
branching, and baselining to name a few, which help people collaborate
better.

* Ina centralized VCS, the developers should always be connected to the
network. As a result, the VCS at any given point of time always represents
the updated code.

[30]

Chapter 1

The following diagram illustrates a centralized VCS:

User C User A User B
File A g File A g File A J—:—l
<[> <[> <[>

© O ®

A centralized version control system

Distributed version control systems

Another type of VCS is the distributed VCS. Here, there is a central repository
containing all the software solution code. Instead of creating a branch, the developers
completely clone the central repository on their local machine and then create a
branch out of the local clone repository. Once they are done with their work, the
developer first merges their branch with the Integration branch, and then syncs the
local clone repository with the central repository.

[31]

Concepts of Continuous Integration

You can argue that this is a combination of a local VCS plus a central VCS.
An example of a distributed VCS is Git.

Server

File A

FAY
—
v

|
| ' |

User C User A User B

File A g File A File A J—:—l

<f> <[>

A distributed version control system

L]

Use repository tools

As part of the software development life cycle, the source code is continuously built
into binary artifacts using Continuous Integration. Therefore, there should be a place
to store these built packages for later use. The answer is to use a repository tool. But,
what is a repository tool?

A repository tool is a version control system for binary files. Do not confuse this with
the version control system discussed in the previous sections. The former is responsible
for versioning the source code and the lateral for binary files, such as . rar, .war, .exe,
.msi, and so on.

[32]

Chapter 1

As soon as a build is created and passes all the checks, it should be uploaded to the
repository tool. From there, the developers and testers can manually pick them,
deploy them, and test them, or if the automated deployment is in place, then the
build is automatically deployed in the respective test environment. So, what's the
advantage of using a build repository?

A repository tool does the following:

* Every time a build gets generated, it is stored in a repository tool. There are
many advantages of storing the build artifacts. One of the most important
advantages is that the build artifacts are located in a centralized location from
where they can be accessed when needed.

* It can store third-party binary plugins, modules that are required by the
build tools. Hence, the build tool need not download the plugins every time
a build runs. The repository tool is connected to the online source and keeps
updating the plugin repository.

* It records what, when, and who created a build package.

* It creates a staging area to manage releases better. This also helps in speeding
up the Continuous Integration process.

* Ina Continuous Integration environment, each build generates a package
and the frequency at which the build and packaging happen is high. As
a result, there is a huge pile of packages. Using a repository tool makes it
possible to store all the packages in one place. In this way, developers get
the liberty to choose what to promote and what not to promote in higher
environments.

Use a Continuous Integration tool

What is a Continuous Integration tool? It is nothing more than an orchestrator. A
continuous integration tool is at the center of the Continuous Integration system and
is connected to the version control system tool, build tool, repository tool, testing and
production environments, quality analysis tool, test automation tool, and so on. All it
does is an orchestration of all these tools, as shown in the next image.

[33]

Concepts of Continuous Integration

There are many Continuous Integration tools: Jenkins, Build Forge, Bamboo,
and Team city to name a few.

Developer 2 Developer 3

O
M
N

Developer 1 Developer n

L = , =
Test Server 1 Build Server 1

L = , =
Test Server 2 Build Server 2

L = L, =]
Test Server3 Build Server 3

Repository Server Production Server

Basically, Continuous Integration tools consist of various pipelines. Each pipeline
has its own purpose. There are pipelines used to take care of Continuous Integration.
Some take care of testing, some take care of deployments, and so on. Technically, a
pipeline is a flow of jobs. Each job is a set of tasks that run sequentially. Scripting is
an integral part of a Continuous Integration tool that performs various kinds of tasks.
The tasks may be as simple as copying a folder/file from one location to another, or
it can be a complex Perl script used to monitor a machine for file modification.

[34]

Chapter 1

Creating a self-triggered build

The next important thing is the self-triggered automated build. Build automation is
simply a series of automated steps that compile the code and generate executables.
The build automation can take help of build tools, such as Ant and Maven. Self-
triggered automated builds are the most important parts of a Continuous Integration
system. There are two main factors that call for an automated build mechanism:

* Speed

* Catching integration or code issues as early as possible

There are projects where 100 to 200 builds happen per day. In such cases, speed is an
important factor. If the builds are automated, then it can save a lot of time. Things
become even more interesting if the triggering of the build is made self-driven
without any manual intervention. An auto-triggered build on very code change
further saves time.

When builds are frequent and fast, the probability of finding errors (a build error,
compilation error, and integration error) is also greater and faster.

% Prohability of finding error

Y

Frequency of build

Automate the packaging

There is a possibility that a build may have many components. Let's take, for
example, a build that has a . rar file as an output. Along with this, it has some Unix
configuration files, release notes, some executables, and also some database changes.
All these different components need to be together. The task of creating a single
archive or a single media out of many components is called packaging.

[35]

Concepts of Continuous Integration

This again can be automated using the Continuous Integration tools and can save a
lot of time.

e » B

Build 1

$o
v

s » R

Java files

JAR
Build

(2%

m
=

iid 4 Felease Package

{c}

Build

(5]

{c}

Build 6
Felease Notes

Using build tools

IT projects can be on various platforms, such as Java, .NET, Ruby on Rails, C, and
C++ to name a few. Also, in a few places, you may see a collection of technologies. No
matter what, every programming language, excluding the scripting languages, has
compilers that compile the code. Ant and Maven are the most common build tools
used for projects based on Java. For the .NET lovers, there is MSBuild and TFS build.
Coming to the Unix and Linux world, you have make and omake, and also clearmake
in case you are using IBM Rational ClearCase as the version control tool. Let's see the
important ones.

[36]

Chapter 1

Maven

Maven is a build tool used mostly to compile Java code. It uses Java libraries and
Maven plugins in order to compile the code. The code to be built is described using
an XML file that contains information about the project being built, dependencies,
and so on.

Maven can be easily integrated into Continuous Integration tools, such as Jenkins,
using plugins.

MSBuild

MSBuild is a tool used to build Visual Studio projects. MSBuild is bundled with
Visual Studio. MSBuild is a functional replacement for nmake. MSBuild works

on project files, which have the XML syntax, similar to that of Apache Ant. Its
fundamental structure and operation are similar to that of the Unix make utility.
The user defines what will be the input (the various source codes), and the output
(usually, a . exe or .msi). But, the utility itself decides what to do and the order in
which to do it.

Automating the deployments

Consider an example, where the automated packaging has produced a package that
contains .war files, database scripts, and some Unix configuration files. Now, the
task here is to deploy all the three artifacts into their respective environments. The
.war files must be deployed in the application server. The Unix configuration files
should sit on the respective Unix machine, and lastly, the database scripts should
be executed in the database server. The deployment of such packages containing
multiple components is usually done manually in almost every organization that
does not have automation in place. The manual deployment is slow and prone to
human errors. This is where the automated deployment mechanism is helpful.

Automated deployment goes hand in hand with the automated build process.
The previous scenario can be achieved using an automated build and deployment
solution that builds each component in parallel, packages them, and then deploys
them in parallel. Using tools such as Jenkins, this is possible. However, there are
some challenges, which are as follows:

* There is a considerable amount of scripting required to orchestrate build
packaging and deployment of a release containing multiple components.
These scripts by themselves are huge code to maintain that require time
and resources.

[37]

Concepts of Continuous Integration

* In most of the cases, deployment is not as simple as placing files in a
directory. For example, there are situations where the deployment
activity is preceded by steps to configure the environment.

The field of managing the configuration on multiple machines is
called configuration management. There are tools, such as Chef and
’ Puppet, to do this.

Automating the testing

Testing is an important part of a software development life cycle. In order to
maintain quality software, it is necessary that the software solution goes through
various test scenarios. Giving less importance to testing can result in customer
dissatisfaction and a delayed product.

Since testing is a manual, time-consuming, and repetitive task, automating the
testing process can significantly increase the speed of software delivery. However,
automating the testing process is a bit more difficult than automating the build,
release, and deployment processes. It usually takes a lot of efforts to automate nearly
all the test cases used in a project. It is an activity that matures over time.

Hence, when we begin to automate the testing, we need to take a few factors into
consideration. Test cases that are of great value and easy to automate must be
considered first. For example, automate the testing where the steps are the same, but
they run every time with different data. You can also automate the testing where a
software functionality is being tested on various platforms. In addition, automate the
testing that involves a software application running on different configurations.

Previously, the world was mostly dominated by the desktop applications.
Automating the testing of a GUI-based system was quite difficult. This called for
scripting languages where the manual mouse and keyboard entries were scripted
and executed to test the GUI application. Nevertheless, today the software world is
completely dominated by the web and mobile-based applications, which are easy to
test through an automated approach using a test automation tool.

[38]

Chapter 1

Once the code is built, packaged, and deployed, testing should run automatically to
validate the software. Traditionally, the process followed is to have an environment
for SIT, UAT, PT, and Pre-Production. First, the release goes through SIT, which
stands for System Integration Test. Here, testing is performed on an integrated

code to check its functionality all together. If pass, the code is deployed in the next
environment, that is, UAT where it goes through a user acceptance test, and then
similarly, it can lastly be deployed in PT where it goes through the performance test.
Thus, in this way, the testing is prioritized.

It is not always possible to automate all of the testing. But, the idea is to automate
whatever testing is possible. The previous method discussed requires the need to
have many environments and also a number of automated deployments into various
environments. To avoid this, we can go for another method where there is only one
environment where the build is deployed, and then, the basic tests are run and after
that, long running tests are triggered manually.

Use static code analysis

Static code analysis, also commonly called white-box testing, is a form of software
testing that looks for the structural qualities of the code. For example, it reveals how
robust or maintainable the code is. Static code analysis is performed without actually
executing programs. It is different from the functional testing, which looks into the
functional aspects of software and is dynamic.

Static code analysis is the evaluation of software's inner structures. For example, is
there a piece of code used repetitively? Does the code contain lots of commented
lines? How complex is the code? Using the metrics defined by a user, an analysis
report can be generated that shows the code quality in terms of maintainability. It
doesn't question the code functionality.

Some of the static code analysis tools, such as SonarQube come with a dashboard,
which shows various metrics and statistics of each run. Usually, as part of
Continuous Integration, the static code analysis is triggered every time a build runs.
As discussed in the previous sections, static code analysis can also be included before
a developer tries to check-in his code. Hence, code of low quality can be prevented
right at the initial stage.

Static code analysis support many languages, such as Java, C/C++, Objective-C, C#,
PHP, Flex, Groovy, JavaScript, Python, PL/SQL, COBOL, and so on.

[39]

Concepts of Continuous Integration

Automate using scripting languages

One of the most important parts, or shall we say the backbone of Continuous
Integration are the scripting languages. Using these, we can reach where no tool
reaches. In my own experience, there are many projects where build tools, such as
Maven, Ant, and the others don't work. For example, the SAS Enterprise application
has a GUI interface to create packages and perform code promotions from
environment to environment. It also offers a few APIs to do the same through the
command line. If one has to automate the packaging and code promotion process

in a project that is based on SAS, then one ought to use the scripting languages.

Perl

One of my favorites, Perl is an open source scripting language. It is mainly used for
text manipulation. The main reasons for its popularity are as follows:

* It comes free and preinstalled with any Linux and Unix OS
* It's also freely available for Windows
* Itis simple and fast to script using Perl

* It works both on Windows, Linux, and Unix platforms

Though it was meant to be just a scripting language for processing files, nevertheless
it has seen a wide range of usages in the areas of system administration, build,
release and deployment automation, and much more. One of the other reasons

for its popularity is the impressive collection of third-party modules.

I would like to expand on the advantages of the multiple platform capabilities

of Perl. There are situations where you will have Jenkins servers on a Windows
machine, and the destination machines (where the code needs to be deployed) will
be Linux machines. This is where Perl helps; a single script written on the Jenkins
Master will run on both the Jenkins Master and the Jenkins Slaves.

However, there are various other popular scripting languages that you can use,
such as Ruby, Python, and Shell to name a few.

Test in a production-like environment

Ideally testing such as SIT, UAT, and PT to name a few, is performed in an
environment that is different from the production. Hence, there is every possibility
that the code that has passed these quality checks may fail in production. Therefore,
it's advisable to perform an end-to-end testing on the code in a production-like
environment, commonly referred to as a pre-production environment. In this way,
we can be best assured that the code won't fail in production.

[40]

Chapter 1

However, there is a challenge to this. For example, consider an application that

runs on various web browsers both on mobiles and PCs. To test such an application
effectively, we would need to simulate the entire production environment used

by the end users. These call for multiple build configurations and complex
deployments, which are manual. Continuous Integration systems need to take care
of this; on a click of a button, various environments should be created each reflecting
the environment used by the customers. And then, this should be followed by
deployment and testing thereafter.

Backward traceability

If something fails, there should be an ability to see when, who, and what caused the
failure. This is called as backward traceability. How do we achieve it? Let's see:

* By introducing automated notifications after each build. The moment a build
is completed, the Continuous Integration tools automatically respond to the
development team with the report card.

* As seen in the Scrum methodology, the software is developed in pieces called
backlogs. Whenever a developer checks in the code, they need to apply a
label on the checked-in code. This label can be the backlog number. Hence,
when the build or a deployment fails, it can be traced back to the code that
caused it using the backlog number.

* Labeling each build also helps in tracking back the failure.

Using a defect tracking tool

Defect tracking tools are a means to track and manage bugs, issues, tasks, and so on.
Earlier projects were mostly using Excel sheets to track their defects. However, as
the magnitude of the projects increased in terms of the number of test cycles and the
number of developers, it became absolutely important to use a defect tracking tool.
Two of the most popular defect tracking tools are Atlassian JIRA and Bugzilla.

The quality analysis market has seen the emergence of various bug tracking systems
or defect management tools over the years.

A defect tracking tools offers the following features:

* Itallows you to raise or create defects and tasks that have got various fields
to define the defect or the task.

* Itallows you to assign the defect to the concerned team or an individual
responsible for the change.

* It progresses through the life cycle stages workflow.

[41]

Concepts of Continuous Integration

* It provides you with the feature to comment on a defect or a task, watch the
progress of the defect, and so on.

* It provides metrics. For example, how many tickets were raised in a month?
How much time was spent on resolving the issues? All these metrics are of
significant importance to the business.

* Itallows you to attach a defect to a particular release or build for better
traceability.

The previously mentioned features are a must for a bug tracking system. There
may be many other features that a defect tracking tool may offer, such as voting,
estimated time to resolve, and so on.

Continuous Integration benefits

The way a software is developed always affects the business. The code quality, the
design, time spent in development and planning of features, all affect the promises
that a company has made to its clients.

Continuous Integration helps the developers in helping the business. While going
through the previous topics, you might have already figured out the benefits of
implementing Continuous Integration. However, let's see some of the benefits that
Continuous Integration has to offer.

Freedom from long integrations

When every small change in your code is built and integrated, the possibility of
catching the integration errors at an early stage increases. Rather than integrating
once in 6 months, as seen in the waterfall model, and then spending weeks resolving
the merge issues, it is good to integrate frequently and avoid the merge hell. The
Continuous Integration tool like Jenkins automatically builds and integrates your
code upon check-in.

Production-ready features

Continuous Delivery enables you to release deployable features at any point in time.
From a business perspective, this is a huge advantage. The features are developed,
deployed, and tested within a timeframe of 2 to 4 weeks and are ready to go live
with a click of a button.

[42]

Chapter 1

Analyzing and reporting

How frequent are the releases? What is the success rate of builds? What is the thing
that is mostly causing a build failure? Real-time data is always a must in making
critical decisions. Projects are always in the need of recent data to support decisions.
Usually, managers collect this information manually, which requires time and
efforts. Continuous Integration tools, such as Jenkins provide the ability to see
trends and make decisions. A Continuous Integration system provides the
following features:

* Real-time information on the recent build status and code quality metrics.

* Since integrations occur frequently with a Continuous Integration system,
the ability to notice trends in build, and overall quality becomes possible.

Continuous Integration tools, such as Jenkins provide the team members with
metrics about the build health. As all the build, packaging, and deployment work is
automated and tracked using a Continuous Integration tool; therefore, it is possible
to generate statistics about the health of all the respective tasks. These metrics can
be the build failure rate, build success rate, the number of builds, who triggered the
build, and so on.

All these trends can help project managers and the team to ensure that the project is
heading in the right direction and at the right pace.

Also, Continuous Integration incorporates static code analysis, which again on every
build gives a static report of the code quality. Some of the metrics of great interest are
code style, complexity, length, and dependency.

Catch issues faster

This is the most important advantage of having a carefully implemented Continuous
Integration system. Any integration issue or merge issue gets caught early. The
Continuous Integration system has the facility to send notifications as soon as the
build fails.

Spend more time adding features

In the past, development teams performed the build, release, and deployments.
Then, came the trend of having a separate team to handle build, release, and
deployment work. Yet again that was not enough, as this model suffered from
communication issues between the development team and the release team.

[43]

Concepts of Continuous Integration

However, using Continuous Integration, all the build, release, and the deployment
work gets automated. Therefore, now the development team need not worry about
anything other than developing features. In most of the cases, even the completed
testing is automated.

Rapid development

From a technical perspective, Continuous Integration helps teams work more
efficiently. This is because Continuous Integration works on the agile principles.
Projects that use Continuous Integration follow an automatic and continuous
approach while building, testing, and integrating their code. This results in a faster
development.

Since everything is automated, developers spend more time developing their code
and zero time on building, packaging, integrating, and deploying it. This also helps
teams, which are geographically distributed, to work together. With a good software
configuration management process in place, people can work on large teams.

Test Driven Development (TDD) can further enhance the agile development by
increasing its efficiency.

Summary

"Behind every successful agile project, there is a Continuous Integration server."

Looking at the evolutionary history of the software engineering process, we
now know how Continuous Integration came into existence. Truly, Continuous
Integration is a process that helps software projects go agile.

The various concepts, terminologies, and best practices discussed in this chapter
form a foundation for the upcoming chapters. Without these, the upcoming chapters
are mere technical know-how.

In this chapter, we also learned how various DevOps tools go hand-in-hand to
achieve Continuous Integration, and of course, help projects go agile. We can fairly
conclude that Continuous Integration is an engineering practice where each chunk of
code is immediately built and unit-tested, then integrated and again built and tested
on the Integration branch.

We also learned how feedback forms an important part of a Continuous
Integration system.

[44]

Chapter 1

Continuous Integration depends incredibly on automation of various software
development processes. This also means that using a Continuous Integration tool
alone doesn't help in achieving Continuous Integration, and Continuous Integration
does not guarantee zero bugs. But it guarantees early detection.

[45]

Setting up Jenkins

The current chapter is all about installing Jenkins across various platforms. We will
begin with a short introduction to Jenkins and the components that make it. We will
also explore why Jenkins is a better choice than the other Continuous Integration
tools, and how it fits in as a Continuous Integration server.

Later in the chapter, we will go through an in-detail installation of Jenkins inside

a container (the Apache Tomcat server), followed by an analysis of the merits of
such an approach, thereby answering why most organizations choose to use Jenkins
inside a Web Server.

Last but not least, we will see how to install Jenkins across various types of operating
systems as a standalone application.

Introduction to Jenkins

Jenkins is an open source Continuous Integration tool. However, it's not limited to
Continuous Integration alone. In the upcoming chapters, we will see how Jenkins
can be used to achieve Continuous Delivery, Continuous Testing, and Continuous
Deployment. Jenkins is supported by a large number of plugins that enhance its
capability. The Jenkins tool is written in Java and so are its plugins. The tool has a
minimalistic GUI that can be enhanced using specific plugins if required.

What is Jenkins made of?

Let's have a look at the components that make up Jenkins. The Jenkins framework
mainly contains jobs, builds, parameters, pipelines and plugins. Let's look at them
in detail.

[47]

Setting up Jenkins

Jenkins job

At a higher level, a typical Jenkins job contains a unique name, a description,
parameters, build steps, and post-build actions. This is shown in the following
screenshot:

Project name Jenkins Job Name

Description

Discard Old Builds @
This build is parameterized @
Disable Build (Mo new builds will be executed until the project is re-enabled.) ®
Restrict where this project can be run @
Advanced Project Options
Use custom workspace @
Display Name @
Keep the build logs of dependencies @
Source Code Management
® None
Git
Subversion
Build Triggers
Trigger builds remotely (e.g.. from scripts) @
Build after other projects are built @
Build periodically @
Poll SCM (2]
Build
Execute Windows batch command @
Command
%
Post-build Actions
E-mail Notification @
Recipients
¥ Send e-mail for every unstable build
Send separate e-mails to individuals who broke the build @
Trigger parameterized build on other projects (3]
Build Triggers
Projects to build Next Jenkins Job Name
Trigger when build is Stable v @

[48]

Chapter 2

Jenkins parameters

Jenkins parameters can be anything: environment variables, interactive values,
pre-defined values, links, triggers, and so on. Their primary purpose is to assist the
builds. They are also responsible for triggering pre-build activities and post-build
activities.

Jenkins build

A Jenkins build (not to be confused with a software build) can be anything from a
simple Windows batch command to a complex Perl script. The range is extensive,
which include Shell, Perl, Ruby, and Python scripts or even Maven and Ant builds.
There can be number of build steps inside a Jenkins job and all of them run in
sequence. The following screenshot is an example of a Maven build followed

by a Windows batch script to merge code:

Build
Invoke Maven 3 ®
Maven Version Maven for Nodes v
Root POM payslip/pom.xml ®
Goals and options | .- test -Puat ®
Advanced...
Delete
Execute Windows batch command (7]
Command £
cd Projectlenkins
git checkout integration
git merge featurel --stat P
See the list of availsble environment variables
Delete

[49]

Setting up Jenkins

Jenkins post-build actions

Post-build actions are parameters and settings that define the subsequent steps to
be performed after a build. Some post-build actions can be configured to perform
various activities depending on conditions. For example, we can have a post-build
action in our current job, which in the event of a successful build starts another

Jenkins job. This is shown in the following screenshot:

Trigger parameterized build on other projects

Build Triggers

Jenkins pipeline

Projects to build

Trigger when build is

Trigger build without parameters

Predefined parameters

Parameters GIT_COMMIT=${GIT_COMMIT}

Upload_Package To_Artifactory

Stable

Jenkins pipeline, in simple terms, is a group of multiple Jenkins jobs that run in
sequence or in parallel or a combination of both. The following screenshot is an
example of a Jenkins Continuous Delivery pipeline. There are five separate Jenkins
jobs, all running one after the other.

CcD

Static Code Analysis, Integration-Testing

aminuie ago 20 sec

Publish to Artifactory
aminute ago 1sec

Deploy to Testing Server
a few seconds age 2 sec

User Acceptance Test
a few seconds ago 18 sec

Performance Test

[50]

Chapter 2

Jenkins Pipeline is used to achieve a larger goal, like Continuous
— Integration or Continuous Delivery.

Jenkins plugins
Jenkins plugins are software pieces that enhance the Jenkins' functionality. Plugins

after installation, manifest in the form of either system settings or parameters inside
a Jenkins job.

There is a special section inside the Jenkins master server to manage plugins. The
following screenshot shows the Jenkins system configuration section. It's a setting
to configure the SonarQube tool (a static code analysis tool). The configuration is
available only after installing the Jenkins plugin for SonarQube named sonar.

SonarQube

Environment variables Enable injection of SonarQube server configuration as build environment variables

SonarQube installations
ame
Sonar

Server URL
Default is hitp:/Moeslhost:B000
SonarQube account legin

SonarQube account password

Disable

Check to quickly disable SonarQube on all jobs.

Advanced...

Delete SonarQube

Add SonarQube

List of SonarQlube installations

[51]

Setting up Jenkins

Why use Jenkins as a Continuous Integration
server?

DevOps engineers across the world have their own choice when it comes to
Continuous Integration tools. Yet, Jenkins remains an undisputed champion
among all. The following are some of the advantages of using Jenkins.

It's open source

There are a number of Continuous Integration tools available in the market, such as
Go, Bamboo, TeamCity, and so on. But the best thing about Jenkins is that it's free,
simple yet powerful, and popular among the DevOps community.

Community-based support

Jenkins is maintained by an open source community. The people who created the
original Hudson are all working for Jenkins after the Jenkins-Hudson split.

Lots of plugins

There are more than 300 plugins available for Jenkins and the list keeps increasing.
Plugins are simple Maven projects. Therefore, anyone with a creative mind can
create and share their plugins on the Jenkins community to serve a purpose.

Jenkins has a cloud support

There are times when the number of builds, packaging, and deployment requests
are more, and other times they are less. In such scenarios, it is necessary to have a
dynamic environment to perform builds. This can be achieved by integrating Jenkins
with a cloud-based service such as AWS. With this set up, build environments can be
created and destroyed automatically as per demand.

[52]

Chapter 2

Jenkins as a centralized Continuous
Integration server

Jenkins is clearly an orchestrator. It brings all the other DevOps tools together
in order to achieve Continuous Integration. This is clearly depicted in the next
screenshot. We can see Jenkins communicating with the version control tool,
repository tool, and static code analysis tool using plugins. Similarly, Jenkins
communicates with the build servers, testing servers, and the production server
using the Jenkins slave agent.

. =)
u u
L=
VCS Server
L= Jenkins Slave Agent
Sinfic Code VCS Plugin L =
Analysis Saonar Plugin
o Jenkins Master Jenkins Slave Agent
Atifactary Plugin * , = P
— N :
= Jenkins Slave Agent
Repository . =]
Server Jenkins Cl
Server Jenkins Slave Agent
L =
‘ Build Servers
Jenkins Slave Agent
L =
G Jenkins Slave
Jenkins Slave Agent ———
L =
Production
Jenkins Slave Agent Server
Jenkins Slave Agent
L=

Testing Server

[53]

Setting up Jenkins

Hardware requirements

Answering the hardware requirements of Jenkins is quite a challenge. Ideally, a
system with Java 7 or above and 1-2 GB RAM is enough to run Jenkins master server.
However, there are organizations that go way up to 60+ GB RAM for their Jenkins
Master Server alone.

Therefore, hardware specifications for a Jenkins master server largely depend on the
organization's requirements. Nevertheless, we can make a connection between the
Jenkins operations and the hardware as follows:

The number of users accessing Jenkins master server (number of HTTP
requests) will cost mostly the CPU.

The number of Jenkins slaves connected to Jenkins master server will cost
mostly the RAM.

The number of jobs running on a Jenkins master server will cost the RAM
and the disk space.

The number of builds running on a Jenkins master server will cost the
RAM and the disk space (this can be ignored if builds happen on Jenkins
slave machines).

[Refer to the sample use cases at the end of the chapter.]

Running Jenkins inside a container

Jenkins can be installed as a service inside the following containers:

Apache Geronimo 3.0
Glassfish

IBM WebSphere
JBoss

Jetty

Jonas

[54]

Chapter 2

* Liberty profile
* Tomcat
* WebLogic

In the current section, we will see how to install Jenkins on the Apache
Tomcat server.

Installing Jenkins as a service on the Apache
Tomcat server

Installing Jenkins as a service on the Apache Tomcat server is pretty simple. We can
either choose to use Jenkins along with other services already present on the Apache
Tomcat server, or we may use the Apache server solely for Jenkins.

Prerequisites

I assume that the Apache Tomcat server is installed on the machine where you
intend to run Jenkins. In the following section, we will use the Apache Tomcat server
8.0. Nevertheless, Apache Tomcat server 5.0 or greater is sufficient to use Jenkins.

A machine with 1 GB RAM is enough to start with. However, as the number of jobs
and builds increase, so should the memory.

We also need Java running on the machine. In this section, we are using jre1.8.0_60.
While installing the Apache Tomcat server, you will be asked to install Java.
Nevertheless, it is suggested that you always use the latest stable version available.

. The current section focuses on running Jenkins inside a container
% like Apache Tomcat. Therefore, the underlying OS where the Apache
= Tomcat server is installed can be anything. We are using Windows 10
OS in the current subtopic.

[55]

Setting up Jenkins

Perform the following steps for installing Jenkins inside a container:

1. Download the latest jenkins.war file from https://jenkins.io/
download/.

2. Click on the Download Jenkins link, as shown in the following screenshot:

- O x
ﬁ Jenkins installation and == X

< (& https://jenkins.io/download/ w A =

Jenkins | Downloads -

Build great things at any scale

The leading open source automation server, Jenkins provides
hundreds of plugins to support building, deploying and
automating any project.

Download Jenkins

Get 1.642.4 LTS .war or the latest 1.655 weekly release

3. You will be presented with an option to download LTS Release and
Weekly Release.

[56]

https://jenkins.io/download/
https://jenkins.io/download/

Chapter 2

4. Choose the LTS Release by clicking on the 1.642.4.war link, as shown in the
following screenshot. Do not click on the dropdown menu.

* At the time of writing this book, 1.642. 4 .war was the latest Jenkins
% LTS version available. Readers are free to select whatever Jenkins LTS
version appears on their screen.

LTS Release Weekly Release

LTS (Long-Term Support) releases are A new release is produced weekly to deliver
chosen every 12 weeks from the stream of bug fixes and features to users and plugin
regular releases as the stable release for developers.
that time period.

216424 war | ~ 01655 war ~

Changelog | Past Releases Changelog | Past Releases

Download Jenkins

Get 1.642 4 LTS _war or the latest 1.655 weekly release

Clicking on the dropdown button will provide you with the standalone
L package for various operating systems.

[57]

Setting up Jenkins

Installing Jenkins along with other services on the
Apache Tomcat server

An organization can follow the current approach if they do not wish to have individual
servers for Jenkins master alone, but want to host it along with other services that are
already running on their Apache Tomcat server. The steps are as follows:

1. Simply move the downloaded jenkins.war file to the webapps folder, which
is present inside the installation directory of your Apache Tomcat server. In
our case, it's C: \Program Files\Apache Software Foundation\Tomcat
8.0\webapps.

= | webapps

| 4
“ Home Share View

/ [y i - -
o Cut « S| x _L 4 Mew item W 3 Open
= - e Copy path i | Easy access ~ |
Pin to Quick Copy Move Copy Delete Rename Mew Properties
access to~ ta~ < folder <

« = « 1 > ThisPC » Local Disk (C) » Program Files » Apache Software Foundation » Tomcat 8.0 > webapps

#~

Quick access Name Date modified Type Size

. docs File folder
@ OneDrive
examples File folder
[This PC host-manager File folder
jenkins File folder
¥ Network J -
manager File folder
ROOT File folder
| jenkins.war WAR File 61,728 KB
You will notice that a jenkins folder automatically gets created
the moment you move the jenkins.war package to the webapps
. folder. This is because the .war file is a Web Application Archive

file that automatically gets extracted once deployed to the webapps
directory. We did a small deployment activity.

2. That's all you need to do. You can access Jenkins using the URL http://
localhost:8080/jenkins.

[58]

Chapter 2

3. The Jenkins Dashboard is shown in the following screenshot:

ﬂ Dashboard [Jenkins] X — Y
€ C localhost:8080/jenkins =

Er -2

Jenkins

Jenkins ENABLE AUTO REFRESH

New Item #add description
2 oo .
& People Welcome to Jenkins!
= Build History
#. Manage Jenkins Please create new jobs to get started.

4. Credentials

Build Queue =

Mo builds in the queue.

Build Executor Status =

1 Idle
2 ldle

Installing Jenkins alone on the Apache Tomcat
server

On the other hand, if you chose to have the Apache Tomcat server solely for using
Jenkins then in that case perform the following steps:

1. Rename the downloaded jenkins.war package to ROOT.war.

2. Next, delete everything inside the webapps folder.

[59]

Setting up Jenkins

3. Now move the ROOT.war (renamed) package to the webapps folder. In the
end, everything should look like the following screenshot.

It's always recommended to have a dedicated web server solely
s for Jenkins.

| = | webapps
“ Home Share View
/ 5 item = o
. oy Cut # = x _I| q Mew item \il || Open
=l ~ e Copy path =_J Easy access =
Copy Maove Copy Delete Rename Mew Properties

to~ to~ = folder

« > « 4 > ThisPC » Local Disk (C:) » Program Files » Apache Software Foundation » Tomcat 80 > webapps

-

s Quick access Mame Date medified Type Size
. ROQT File folder
& OneDrive - o
| ROOT.war WAR File 61,728 KB
[ThisPC
¥ Network

4. In this way, you can access Jenkins using the URL http://localhost:8080/
without any additional path. Apparently, the Apache server is now a Jenkins

server.

ﬁ Dashboard [Jenkins] x
L= C & [localhost:8080

® Jenkins

Jenkins

= New Item [radd description

& People Welcome to Jenkins!

= Build History
Flease create new jobs to get started.

- lanki
. IManage Jenkins

#. Credentials

Build Queue -

Mo builds in the queue.

Build Executor Status =

1 Idle
2 ldle

[60]

Chapter 2

In the preceding screenshot, we can see a folder named ROOT inside
the webapps folder. This ROOT folder gets generated automatically
as we move the ROOT . war file to the webapps folder.

. Deleting the content inside the webapps folder (leaving behind
a the original ROOT directory and ROOT . war) and then moving the
L jenkins.war file to the webapps folder is also sufficient to make
the Apache Tomcat server solely for Jenkins' use.

The step of renaming jenkins.war to ROOT . war is only necessary
if you want to make http://localhost :8080/ the standard
URL for Jenkins.

Setting up the Jenkins home path

Before we start using Jenkins, there is one important thing to configure: the
JENKINS_HOME path. This is the location where all of the Jenkins configurations,
logs, and builds are stored. Everything that you create and configure on the Jenkins
dashboard is stored here.

In our case, by default, the JENKINS HOME variable is set to C: \Windows\System32\
config\systemprofile\.jenkins. We need to make it something more accessible,
for example, C:\Jenkins. This can be done in two ways.

Method 1 — configuring the context.xml file

Context .xml is a configuration file related to the Apache Tomcat server. We can
configure the JENKINS_HOME variable inside it using the following steps:

1.
2.

Stop the Apache Tomcat server.

Go to C:\Program Files\Apache Software Foundation\Tomcat 8.0\
conf.
Modify the context .xml file using the following code:

<Context>

<Environment name="JENKINS HOME" value="C:\Jenkins" type="java.
lang.String"/>

</Context>

After modifying the file, start the Apache Tomcat server.

[61]

Setting up Jenkins

To stop the Apache Tomcat server on Windows, run the
following command in the command prompt as an admin:

~ net stop Tomcats.
To start the Apache Tomcat server on Windows, run the

following command in the command prompt as an admin:
net start Tomcats8.

Method 2 — creating the JENKINS_HOME
environment variable

We can create the JENKINS_HOME variable using the following steps:

1.
2.

Stop the Apache Tomcat server.

Now, open the Windows command prompt and run the following command:
setx JENKINS_HOME "C:\Jenkins"

After executing the command, check the value of JENKINS_ HOME with the
following command:

echo %JENKINS HOME%

The output should be:
C:\Jenkins

Start the Apache Tomcat server.

To check if the Jenkins home path is set to C: \Jenkins, open the following
link: http://localhost:8080/configure. You should see the Home
directory value set to C:\Jenkins, as shown in the following screenshot:

[62]

Chapter 2

ﬁ Configure System [Jenkin: X

& C f® localhost:8080/configure

Jenkins configuration

= MNew ltem Home directory ChJenkins
&) People

= Build History System Message

Y = Jenki
#. Manage Jenkins

.é; Credentials

Build Queue = .)
of executors 2
Mo builds in the gqueue.
Labels
Build Executor Status = Usage

Utilize this node as much as possible
1 Idle

2 ldle Quiet period -

SCM checkout retry count 0

Why run Jenkins inside a container?

The reason that most organizations choose to use Jenkins on a web server is the
same as the reason most organizations use web servers to host their websites: better
traffic management.

The following factors affect Jenkins server performance:

* Number of jobs
e Number of builds
e Number of slaves

* Number of users accessing Jenkins server (number of HTTP requests)
All these factors can push organizations towards any one of the following tactics:

* Approach 1: Using multiple Jenkins masters, one each for every project

* Approach 2: Maintaining a single Jenkins master on a web server, with an
enhanced hardware and behind a reverse proxy Server

[63]

Setting up Jenkins

The following table measures the merits of both tactics against few
performance factors:

Approach 1 Approach 2
Load Load balancing is achieved The hardware is enhanced to manage
balancing using multiple standalone a large number of builds and jobs.
Jenkins masters, spread across
projects.
Each Jenkins master has its own
set of Jenkins slaves.
Individual teams access their
respective Jenkins servers.
Web Nil Reverse proxies can also compress
acceleration inbound and outbound data. It can
also cache frequently requested
content. Using this feature, the traffic
between Jenkins servers and the
clients can be improved.
Reverse proxy servers can also
perform SSL encryption, thus
reducing the load off your web
servers, thereby boosting their
performance.
Web servers like Apache or NGINX
can help maintain consistency across
various clients during file transfer,
without lashing up Jenkins threads.
Security Security is limited to that A reverse proxy server acts as a
configured in Jenkins. defensive firewall against security
threats using its Request intercepting
feature.

[64]

Chapter 2

Approach 1

Approach 2

Administrator

Administration labor is

greater, as there are multiple
Jenkins masters to manage.
Things like plugin updates

or Jenkins updates, logs, and
configurations need to be taken
care separately for each Jenkins
master.

Administrator is simple in case of a
single Jenkins master.

Disaster
Management

If any one of the Jenkins masters
goes down, services related to it
cease to function. However, the
other Jenkins masters function
uninterrupted.

Disaster management is limited and
recovery is dependent solely on the
Jenkins backup.

The following image shows Approach 1:

Client Machine

A

Client Machine

, = L, =]
Jenking Master 1 Jenkins Master 2
for Project A, Band C for project D and E

Y
‘ o

Client Machine

Jenkins Master 3
for project F, G and H

[65]

Setting up Jenkins

The following image demonstrates Approach 2:

Client Machine

A

Client Machine Client Machine

Internst

(@)

™ nNginx Reverse Proxy Server

Jenkins Master running on Apache

Conclusion

The need to have Jenkins inside a container comes only when you think your Jenkins
server is going to serve a very large group of projects and users. However, there is no
point in using Jenkins within a container if your organization is small with a handful
of Jenkins jobs and with no particular demand for scalability in the very near future.

[66]

Chapter 2

Running Jenkins as a standalone
application

Installing Jenkins as a standalone application is simpler than installing Jenkins as
a service inside a container. Jenkins is available as a standalone application on the
following operating systems:

* Windows

* Ubuntu/Debian

* Red Hat/Fedora/CentOS

* MacOSX
* openSUSE
* FreeBSD

* openBSD
* Gentoo

Setting up Jenkins on Windows

There are two ways in which you can set up Jenkins on Windows. One is by
using the Jenkins native package for Windows, and the other is through the
jenkins.war file.

Installing Jenkins using the native Windows
package

The following are the steps to install Jenkins using the native Windows package:

1. To download the latest stable Jenkins package for Windows go to the link
https://jenkins.io/download/.

[67]

https://jenkins.io/download/

Setting up Jenkins

2. Once on the page, click on the Download Jenkins link, as shown in the
following screenshot:

- O >
Q Jenkins installation and 5= X

&« C' G https://jenkins.io/download/ e

Jenkins | Downloads -

Build great things at any scale

The leading open source automation server, JenkKins provides
hundreds of plugins to support building, deploying and
automating any project.

Download Jenkins

Get 1.642.4 LTS .war or the latest 1.655 weekly release

3. Now, click on the drop-down button and select Windows.

[68]

Chapter 2

Jenkins | Downloads =

LTS Release Weekly Release
erm Support) releases are & new release is produced weekly to deliver
weeks from the stream of bug fixes and fe 5 to users and plugin
ses as the stabie release for developers
that time period

Docker Changelog | Past Releases
FreeBSD

Gentoo

Mac 05 X

OpenBSD
apenSUSE or the latest 2.2 weekly release

load Jenkins

Red Hat/Fedora/Cent0S
Ubuntu/Debian

Windows

4. Once the download completes, unzip the archive file and you will find a
setup.exe.

B = | Application Tools Jenkins Msi
Home Share View Manage
« v » ThisPC » Local Disk (C:) » Users » nikhi » Downloads » Jenkins Msi
Quick access Marme Date modified Type Size
. ﬁ'ﬁ! jenkins 27-09-20153 1819 Windows Installer ... 1,001,280 KB
@ OneDrive
E jenkins-1.631 20-09-20153 21:57 WinRAR ZIP archive 1,01,076 KB
[This PC L) setup 7-09-2015 18:19 Application 4T3 KB

[69]

Setting up Jenkins

5. Run the setup.exe and follow the installation.

8l Jenkins 1.631 Setup

Welcome to the Jenkins 1.631 Setup
Wizard

The Setup Wizard will install Jenkins 1.631 on your computer.
Click Mext to continue or Cancel to exit the Setup Wizard.

6. During the installation process, you will get an option to choose your Jenkins
installation directory (by default, it will be C:\Program Files\Jenkins).
Leave it as it is and click on the Next button.

Jenkins 1.631 Setup — x

Destination Folder
Click Mext to install to the default folder or didk Change to choose another,

Install Jenkins 1.631 to:

|C: \Program Files (x86)\Jenkins),

Change...

[70]

Chapter 2

7. Click on the Finish button.

4 Jenkins 1,631 Setup — *

Completed the Jenkins 1.631 Setup
Wizard

Click the Finish button to exit the Setup Wizard.

8. Upon successful installation, open the Services window from the command
prompt using the following command:

services.msc

9. This will open the services window. Look for a service named Jenkins.

MName - Status Startup Type Log On As
Local System
£k Link-Layer Topology Discovery Mapper Manual Local Service
& Local Session Manager Running Autornatic Local System
£ Microsoft (R) Diagnostics Hub Standard Collector Service Manual Local Systemn
& Microsoft Account Sign-in Assistant Manual (Trigger Start) Local System
£k Microsoft iSCSI Initiator Service Manual Local Systemn
& Microsoft Passport Manual (Trigger Start) Local System

[71]

Setting up Jenkins

10. To start the service, right-click on the Jenkins service and click on Start, as
shown in the following screenshot:

Marne Status Startup Type Log On As

Local System
1 IKE and AuthlP IPsec Keying Modules Start Manual (Trigger Start) Local System
., £ying 99 ¥
©% Internet Explorer ETW Collector Service Manual Local System
& p Stop Y
-.Sé‘;Windows Mobile Hotspot Service Pauce Manual (Trigger Start) Local Service
-..'.‘.;_*;HomeGroup Provider R Manual (Trigger Start) Local Service
% HomeGroup Listener e Manual Local System
i 3 ¥
1 Google Update Service (gupdatem) Restart Manual Local System
i gle Up gup ¥
Q‘?_;Google Update Service (gupdate) All Tasks 5 |Automatic (Delayed ... Local System
Q;Windows Presentation Foundation Font Cache Manual Local Service
-Sé”; File History Service Refresh Manual (Trigger Start) Local System
CFunction Discovery Resource Publication . Manual Local Service
., y Properties
-.S:q‘; Function Discovery Provider Host Manual Local Service
ChFax Help Manual Metwork Service

11. Right-click on the Jenkins service again and click on Properties, as shown in
the following screenshot:

Mame h Status Startup Type Log On As
Local System
{,‘,;_5; KtmRm for Distributed Transaction Coordinator Start nual (Trigger Start) Metwork Service
{,‘,;_5; Link-Layer Topology Discovery Mapper Stop nual Local Service
Q Local Session Manager Fewzz omatic Local System
Q;Microsoft (R) Diagnostics Hub Standard Collector Resume nual Local System
»Sj Microsoft Account Sign-in Assistant F‘ h nual (Trigger Start) Local System
Q;Microsoft 15CS| Initiator Service estart nual Local System
-..‘.‘,2 Microsoft Passport All Tasks » Inual (Trigger Start) Local System
-..‘.‘,2 Microsoft Passport Container nual (Trigger Start) Local Service
-E,} Microsoft Software Shadow Cepy Provider el nual Lecal System
-E.} Microsoft Storage Spaces SMP Properties nual Metwork Service
-..‘.‘.2; Microsoft Windows SMS Router Service. nual (Trigger Start) Local System
-..‘.‘.2; Met.Tcp Port Sharing Service Help abled Lecal Service

12. Under the General tab, you can see the Jenkins Service name field, the Path
to executable, Service status, and the Startup type parameter.

13. Using the Startup type option, we can choose the way Jenkins starts on the
Windows machine. We can choose from Automatic, Manual, and Automatic
(Delayed Start).

14. Always choose the Automatic option.

[72]

Chapter 2

15. Below the Service status field, there is an option to manually Start, Stop,
Pause, and Resume the Jenkins service.

lenkins Properties (Local Computer) >

General logOn Recovery Dependencies

Service name: Jenking
Dizplay name: Jenkinz
Diescription: Jenkins Continuous Integration Server

Fath to executable:
"C:\Program Files {<86)Jenkingjenkins. exg"

Startup type: |.Pu_rtomatic b

Service status: Stopped
Start Stop Pause Besume

fou can specify the start parameters that apply when you start the service
from here.

Start parameters: |

Cancel Bpply

16. Come to the next tab, Log On. Here, we define the username with which
Jenkins starts.

17. You can either choose to use the Local System account (not recommended)
option or you can create a special user Jenkins with special permissions
(recommended).

[73]

Setting up Jenkins

An exclusive account for Jenkins is always preferred. The reason is
» that the Local System account option is not under control. The account
% might get deleted or the password may expire depending on the
’ organization's policies, whereas the Jenkins user account can be set
with preferred policies and privileges.

Jenkins Properties (Local Computer) *

General LoaOn Recovery Dependencies

Log an as:

() Local System account
Allow service to interact with deshkiop

(®) This account: |Jenkins| | Browse...
Password: |ooo-oo-ooo-oooo |
Carfirm password: |.ooooo.ooo.o-oo |

Cancel Aoply

18. Next is the Recovery tab. Here, we can specify the action items in case the
Jenkins service fails to start.

Here's an example: on the First failure field, there is an attempt to restart
Jenkins; in the Second failure field there is an attempt made to restart the
computer. Lastly, in the Subsequent failures field, a program is run to debug
the issue or we can run a script that sends the Jenkins failure log through
mail to the Jenkins admin for investigation.

[74]

Chapter 2

lenkins Properties (Local Computer)

General LogOn FRecovery Dependencies

Select the computer's response if this service fails. Help me st up recovery
actions.

First failure: Restar the Service -
Second failure: Restart the Computer o
Subsequert failures: Run a Program -

Reset fail count after: D days
Restart service after: minutes

[|¥Enable actions for stops with emors: | Restart Computer Options.

Run program
Program:
| Browse. ..

Command line parameters: |

] Append fail court to end of command line (fail=%1%)

Cancel Bpply

Installing Jenkins using the jenkins.war file

The following are the manual steps to install Jenkins using the Jenkins.war
file. These steps can also be configured inside a script to automate the Jenkins

installation. For example, you may want to install Jenkins remotely on a machine
using automated scripts. Let's see the steps in detail.

1.
2.

Open the command prompt and go to the location where you have
downloaded the jenkins .war file.

cd C:\Users\nikhi\Downloads

Execute the following command to install Jenkins:

java -jar jenkins.war

Make sure Java is installed on the machine and the JAVA HOME variable is set.

[75]

Setting up Jenkins

4. Once Jenkins is installed successfully, access it using the link http://
localhost:8080.

- O x
{; Dashboard [Jenkins] *®
< C f [localhost:28080 A=
-
Jenkins
Jenkins ENABLE AUTO REFRESH
&= New ltem Fadd description
& People Welcome to Jenkins!
= Build History
7 Manage Jenkins Please create newmbs to get started.

..'IQ Credentials

Build Queue =

Mo builds in the queue.

Build Executor Status =

1 Idle
2 Idle

@ Help us localize this page Fage generated: Sep 29, 2015 11:1411PM REST APl Jenkins ver. 1.631

5. From the Jenkins Dashboard, click on the Manage Jenkins link on the
left-hand side of the dashboard.

[76]

Chapter 2

6. This will take you to the following page where you can administrate Jenkins.
Click on the Install as Windows Service link.

&5 Manage Jenkins [Jenkins] x \

«-=>Cf DIocalhost:EGSO/mamage?auto,refresh:true

Jenkins

e pu—

Build Executor Status

1 Idle Manage Plugins
2 Idle Add, remove, disable or enable plugins that can extend the functionality of Jenkins. (updates available)

System Information
Displays various environmental information to assist trouble-shooting.

System Log
System log captures output from java.util. logging output related to Jenkins

Load Statistics
Check your resource utilization and see if you need more computers for your builds

Jenkins CLI
Access/manage Jenkins from your shell, or from your script

I

Script Console
Executes arbitrary script for administration/trouble-shooting/di

\

Manage Nodes
Add, remove, control and monitor the various nodes that Jenkins runs jobs on

Iy [

Manage Credentials
Create/delete/modify the credentials that can be used by Jenkins and by jobs running in Jenkins to connect to 3rd party services.

About Jenkins
See the version and license information

Manage Old Data
Scrub configuration files to remove remnants from old plugins and earfier versions

Install as Windows Service
Installs Jenkins as a Windows service to this system, so that Jenkins starts automatically when the machine boots

S-S

|

In-process Script Approval
Allows a Jenkins administrator to review proposed scripts (written e g. in Groovy) which run inside the Jenkins process and so could bypass security
restrictions

\

Prepare for Shutdown
Stops executing new builds, so that the system can be eventually shut down safely

[

[77]

Setting up Jenkins

7. It will ask for the installation directory. Give a location where you want all
your Jenkins metadata to be stored. In our case, it's C: \Jenkins.

ﬁ Install as Windows Service %

&= C' A | [localhost:8080/install/?autc

Jenkins nstall as Windows Service
New Item PR
& Peope .7 Install as Windows Service

= Build History
Installing Jenkins as a Windows service allows you to start Jenkins

P Manage Jenkins as soon as the machine starts, and regardless of who is interactively using Jenkins.

}. Credentials ion Directory | - .
-% Installation Directory | o~ jonwin e

Build Queue =

No builds in the queue.

Build Executor Status =

1 ldle
2 Idle

That's all. Jenkins is all ready for use.

To confirm whether Jenkins is running as a Windows service, open the
services window by running the following command services.msc from
Windows Run. Once the services window opens, check for a service named
Jenkins.

Installing Jenkins using the native Windows package is much easier
. than installing Jenkins using the . war file. However, it's worth
mentioning as this method can be automated. The command: java
s -jar jenkins.war, can be wrapped up in a Windows batch script
and can be run remotely through ssh or sftp on all the Windows
machines where Jenkins is anticipated.

[78]

Chapter 2

Changing the port where Jenkins runs

By default Jenkins, when installed, runs under port 8080. However, if for some
reason you want Jenkins to run on some other port, perform the following steps:

1. Open the jenkins.xml file present under the Jenkins installation directory,
which is ¢:\Program Files (x86) \Jenkins in our case.

2. Inside the jenkins.xml file, go to the following section:

<arguments>-Xrs -Xmx256m -Dhudson.lifecycle=hudson.
lifecycle.WindowsServiceLifecycle -jar "%BASE%\jenkins.war"
--httpPort=8080</arguments>

3. The --httpport option is where you can change the port on which
Jenkins runs.

4. After making the changes open the services window with the command
services.msc from Windows Run.

5. Check for the service named Jenkins. Right-click on it and select Restart, as
shown in the following screenshot:

Es

Marme Status Startup Type Log On As

Running Automatic Local System

Start
‘£ KtmRm for Distribu “ Manual (Trigger Start]) MNetwork Service
£k Link-Layer Topolog Stop Manual Local Service
£ Local Session Mani Pause Running Automatic Local System
£ Microsoft (R) Diagr Resume or Service Manual Local System
£k Microsoft Account Restart Manual (Trigger Start) Local System
£ Microsoft iSCSI Init Manual Lecal Systemn
£ Microsoft Passport HlEE ’ Manual (Trigger 5tart) Local System
‘£ Microsoft Passport Refresh Manual (Trigger Start) Local Service
£ Microsoft Software Manual Lecal Systemn
£ Microsoft Storage ! Properties Manual Metwork Service
£ Microsoft Window Help Manual (Trigger 5tart) Local System
£ Net.Tcp Port Sharing serer Disabled Lecal Service

Setting up Jenkins on Ubuntu

In order to install Jenkins on Ubuntu, open the terminal. Make sure Java is installed
on the machine and the JAVA_ HOME variable is set.

[79]

Setting up Jenkins

Installing the latest version of Jenkins

To install the latest version of Jenkins, perform the following steps in sequence:

1. Check for admin privileges; the installation might ask for the admin
username and password.

2. Download the latest version of Jenkins using the following command:
wget -q -O - https://jenkins-ci.org/debian/jenkins-ci.org.key |
sudo apt-key add -

sudo sh -c 'echo deb http://pkg.jenkins-ci.org/debian binary/ > /
etc/apt/sources.list.d/jenkins.list’

3. Toinstall Jenkins, issue the following commands:
sudo apt-get update
sudo apt-get install jenkins

4. Jenkins is now ready for use. By default, the Jenkins service runs on port
8080.

5. To access Jenkins, go to the following link in the web browser, http://

localhost:8080/.

The link https://jenkins-ci.org/debian/jenkins-ci.org.
key mentioned in the first command leads to the Jenkins repository for
g the latest Jenkins deb package.

Installing the latest stable version of Jenkins

If you prefer to install a stable version of Jenkins, then perform the following steps
in sequence:

1. Check for admin privileges; the installation might ask for admin username
and password.
2. Download the latest version of Jenkins using the following command:

wget -q -O - http://jenkins-ci.org/debian-stable/jenkins-ci.org.
key | sudo apt-key add -

sudo sh -c 'echo deb http://pkg.jenkins-ci.org/debian-stable
binary/ > /etc/apt/sources.list.d/jenkins.list’'

3. Toinstall Jenkins, issue the following commands:
sudo apt-get update

sudo apt-get install jenkins

[80]

https://jenkins-ci.org/debian/jenkins-ci.org.key
https://jenkins-ci.org/debian/jenkins-ci.org.key

Chapter 2

The link http://jenkins-ci.org/debian-stable/jenkins-
% ci.org.key mentioned in the first command leads to the Jenkins
A . .
repository for the latest stable Jenkins deb package.

4. Jenkins is now ready for use. By default, the Jenkins service runs on
port 8080.

5. To access Jenkins, go to the following link in the web browser:
http://localhost:8080/.

— O =
ﬁ Dashboard [lenkins] *®
% C ff [localhost:8080 =
Jenkins
Jenkins EMABLE AUTO REFRESH
= New Item Zadd description
& Peope Welcome to Jenkins!

= Build History

P Manage Jenkins Please create new jobs to get started.

,:ﬁi Credentials

Build Queue =

Mo builds in the queue.

Build Executor Status =

1 Idle
2 ldle

E Help us localize this page Page generated: Sep 29, 2015 111411 PM REST APl Jenkins ver. 1.631

In order to troubleshoot Jenkins, access the logs present at /var/log/

jenkins/jenkins.log.
"~ The Jenkins service runs with the user Jenkins, which automatically

gets created upon installation.

[81]

http://jenkins-ci.org/debian-stable/jenkins-ci.org.key
http://jenkins-ci.org/debian-stable/jenkins-ci.org.key

Setting up Jenkins

Changing the Jenkins port on Ubuntu

To change the Jenkins port on Ubuntu, perform the following steps:

1.

3.

4.

In order to change the Jenkins port, open the jenkins file present inside /
etc/default/.

As highlighted in the following screenshot, the HTTP_PORT variable stored
the port number:

jenkins (/etc/default) - gedit

B POpen v

Z jenkins x | |7 jenkins x

- et = ek meemeage
#

If commented out, the value from the 05 is inherited, which 1is
normally 022 (as of Ubuntu 12.04,

by default umask comes from pam_umask({8) and /etc/login.defs

UMASK=027

port for HTTP connector (default 8@8@; disable with -1)

port for AJP connector (disabled by default)
AJP_PORT=-1

servlet context, important if you want to use apache proxying
PREFIX=/SNAME

arguments to pass to jenkins.

--javahome=%JAVA_HOME

--httpPort=$HTTP_PORT (default 8@8@; disable with -1)
--httpsPort=S$HTTP_PORT

--ajpl13Port=$AJP_PORT
--argumentsRealm.passwd.SADMIN_USER=[password]

PlainText + Tab width:8 ~ Ln 57, Col 1 INS

s HOR H R R R

Inside the same file, there is another important thing to note, the memory
heap size. Heap size is the amount of memory allocated for the Java Virtual
Machine to run properly.

You can change the heap size by modifying the JavA_ARGS variable as shown
in the following example.

[82]

Chapter 2

5. We can also change the user with which the Jenkins service runs on Ubuntu.
In the following screenshot, we can see a variable NAME with a value jenkins.
We can change this to any user we want.

jenkins (fetc/default) - gedit

n_ Popen ¥

jenkins x | [] jenkins x

defaults for jenkins continuous integration server

pulled in from the init script; makes things easier.
NAME=jenkins

location of java
JAVA=/fusr/bin/java

arguments to pass to java
JAVA_ARGS="-Djava.awt.headless=true" # Allow graphs etc. to work even
when an X server is present

#JAVA_ARGS="-Djava.net.preferIPv4Stack=true" # make jenkins listen on
IPv4 address

PIDFILE=/var /run/SNAME/SNAME.pid

user and group to be invoked as (default to jenkins)
JENKINS _USER=SNAME
JENKINS _GROUP=SNAME

location of the jenkins war file
AFMETNS WAR—fnerfehara /SHMAMF /JSMAMF war

PlainText ~ Tab width:8 ~ Ln 11, Col 1 INS

Setting up Jenkins on Fedora

In order to install Jenkins on Fedora, open the Terminal. Make sure Java is installed
on the machine and JAVA HOME variable is set.

Installing Jenkins on Red Hat Linux is similar to installing Jenkins
L on Fedora.

[83]

Setting up Jenkins

Installing the latest version of Jenkins

To install the latest version of Jenkins, perform the following steps in sequence:

1. Check for admin privileges; the installation might ask for admin username
and password.

2. Download the latest version of Jenkins using the following command

sudo wget -0 /etc/yum.repos.d/jenkins.repo http://pkg.jenkins-ci.
org/redhat/jenkins.repo

sudo rpm --import https://jenkins-ci.org/redhat/jenkins-ci.org.key

3. Toinstall Jenkins, issue the following commands:

sudo yum install Jenkins

> Thelink https://pkg.jenkins-ci.org/redhat/jenkins.repo
mentioned in the first command leads to the Jenkins repository for the
g latest Jenkins rpm package.

Installing the latest stable version of Jenkins

If you prefer to install a stable version of Jenkins, then perform the following step in
sequence:

1. Check for admin privileges; the installation might ask for admin username
and password.

2. Download the latest version of Jenkins using the following command:

sudo wget -0 /etc/yum.repos.d/jenkins.repo http://pkg.jenkins-ci.
org/redhat-stable/jenkins.repo

sudo rpm --import https://jenkins-ci.org/redhat/jenkins-ci.org.key

3. Toinstall Jenkins issue the following commands:

sudo yum install Jenkins

The link http://pkg.jenkins-ci.org/redhat-stable/
jenkins.repo mentioned in the first command leads to the
S . . :
Jenkins repository for the latest stable Jenkins rpm package.

4. Once the Jenkins installation is successful, it will automatically run as a
daemon service. By default Jenkins runs on the port 8080.

[84]

https://pkg.jenkins-ci.org/redhat/jenkins.repo
http://pkg.jenkins-ci.org/redhat-stable/jenkins.repo
http://pkg.jenkins-ci.org/redhat-stable/jenkins.repo

Chapter 2

5. To access Jenkins, go to the following link in the web browser
http://localhost:8080/.

If for some reason you are unable to access Jenkins, then check the
firewall setting. This is because, by default, the firewall will block the
ports. To enable them, give the following commands (you might need
admin privileges):

firewall-cmd --zone=public --add-port=8080/tcp -

~ permanent
Q firewall-cmd --zone=public --add-service=http -permanent
firewall-cmd --reload

In order to troubleshoot Jenkins, access the logs present at var/log/
jenkins/jenkins.log.

The Jenkins service runs with the user Jenkins which automatically
gets created upon installation.

Changing the Jenkins port on Fedora

To change the Jenkins port on Fedora, perform the following steps:

1. Open the terminal in Fedora.

2. Switch to the admin account using the following command:

sudo su -

3. Enter the password when prompted.

Execute the following commands to edit the file named jenkins present
at /etc/sysconfig/:
cd /etc/sysconfig/

vi jenkins

[85]

Setting up Jenkins

5. Once the file is open in the terminal, move to the line where you see
JENKINS_PORT="8080", as shown in the following screenshot:

root@localhost:/etc/sysconfig

Edit View Search Terminal Help

string

art: jenkins

enkins 1

Sample use cases

It is always good to learn from others' experiences. The following are the use
cases published by some famous organizations that can give us some idea of the
hardware specification.

Netflix

In 2012, Netflix had the following configuration:
Hardware configuration:

* 2x quad core x86_64 for the Jenkins master with 26 GB RAM
* 1 Jenkins master with 700 engineers using it

¢ FElastic slaves with Amazon EC2 + 40 ad-hoc slaves in Netflix's data center

[86]

Chapter 2

Work load:

* 1,600 Jenkins jobs
* 2,000 Builds per day
* 2 TB of build data

Yahoo!
In 2013, Yahoo! had the following configuration:

Hardware configuration:
* 2 x Xeon E5645 2.40GHz, 4.80GT QPI (HT enabled, 12 cores, 24 threads) with
96 GB RAM, and 1.2 TB of disk space
* 1 Jenkins master with 1,000 engineers using it
* 48 GB max heap to JVM
* S$JENKINS_HOME* lives on NetApp
* 20 TB filer volume to store Jenkins job and build data

* 50 Jenkins slaves in three data centers
Workload:

* 13,000 Jenkins jobs
* 8,000 builds per day

SJENKINS_ HOME is the environment variable that stores the Jenkins
% home path. This is where all the Jenkins metadata, logs, and build data
"~ gets stored.

Summary

In this chapter, we saw the various constituents that make up Jenkins and its
hardware specifications. We also saw how Jenkins can be installed as a service
inside a container such as the Apache Tomcat server, along with its advantages. We
discussed this example because most of the real world Jenkins servers run solely on
the Apache Tomcat server. We also saw Jenkins installation on Windows, Ubuntu,
and Fedora as a standalone application.

The details about configuring Jenkins were kept to a minimum, as the main objective
of the current chapter was to show how diverse Jenkins is when it comes to the
installation process and the variety of operating systems that it supports.

[87]

Configuring Jenkins

The previous chapter was all about installing Jenkins on various platforms. In this
chapter, we will see how to perform some basic Jenkins administration. We will also
familiarize ourselves with some of the most common Jenkins tasks, like creating jobs,
installing plugins, and performing Jenkins system configurations. We will discuss
the following:

Creating a simple Jenkins job with an overview of its components
An overview of the Jenkins home directory

Jenkins backup and restore

Upgrading Jenkins

Managing and configuring plugins

Managing users and permissions

Every small thing that we discuss in the current chapter will form the foundation for
the upcoming chapters, where Jenkins will be configured in many ways to achieve
Continuous Integration and Continuous Delivery.

[89]

Configuring Jenkins

Creating your first Jenkins job

In the current section, we will see how to create a Jenkins Job to clean up the $temp%
directory on our Windows machine where the Jenkins master server is running. We
will also configure it to send an e-mail notification. We will also see how Jenkins
incorporates variables (Jenkins system variable and Windows system variable) while
performing various tasks. The steps are as follows:

1. From the Jenkins Dashboard, click on the New Item link present on the left
side. This is the link to create a new Jenkins job.

ﬁ Dashboard [Jenkins] ®

€& > C A |[)localhost:8080/jenkins s =

Jenkins EMABLE AUTO REFRES
New Item #add description
& Feople Welcome to Jenkins!
= Build History
7 Manage Jenkins Please create new jobs to get started
4. Credentials
Build Queue =

No builds in the queue.

Build Executor Status =

1 Idle
2 ldle

E Help us localize this page Page generated: Oct 22, 2015 4:33:50 PM REST APl Jenkins ver. 1.629

Name your Jenkins job Cleaning Temp_ Directory in the Item name field.

3. Select the Freestyle project option that is present right below the Item name
field.

[90]

Chapter 3

4. Click on the OK button to create the Jenkins job.

-
Jenkins
Jenkins All
New Item Item name Cleaning_Temp_Directory
&. People * Freestyle project
“ Build History This is the central feature of Jenkins. Jenkins will build your project, combining

any SCM with any build system. and this can be even used for something

o other than software build.
p Manage Jenkins

Maven project

Build a maven project. Jenkins takes advantage of your POM files and
drastically reduces the configuration.

.Q Credentials

Build Queue = External Job
This type of job allows you to record the execution of a process run outside
Mo builds in the queue. Jenkins, even on a remote machine. This is designed so that you can use

Jenkins as a dashboard of your existing automation system. See the
documentation for more details.

Build Executor Status =))))
Multi-configuration project

1 Idle Suitable for projects that need a large number of different configurations, such
2 1dle as testing on multiple environments, platform-specific builds, etc.

oK

5. You will be automatically redirected to the page where you can configure
your Jenkins job.

The Jenkins job name contains underscores between the
words. But this is not strictly necessary, as Jenkins has
its own way of dealing with blank spaces. However,
maintaining a particular naming standard helps in

+ managing and comprehending Jenkins jobs better.

@@j%‘\ Below the Item name field, there are four options to
choose from: Freestyle project, Maven project, External
Job, and Multi-configuration project. These are
predefined templates, each having various options that
define the functionality and scope of the Jenkins job. All of
them are self-explanatory.

6. The Project name field contains the name of our newly created Jenkins job.

[91]

Configuring Jenkins

7. Below that, we have the option to add some description about our Jenkins
job. I added one for our Jenkins job.

Project name Cleaning_Temp_Directory

Description Jenkins Job to clean up the temp directory on the current machine.

[Plain text] Preview

8. Below the Description section, there are other options that can be ignored
for now. Nevertheless, you can click on the question mark icon, present after
each option to know its functionality, as shown in the following screenshot:

Discard Old Builds ®

This controls the disk consumption of Jenkins by managing how long you'd like
to keep records of the builds (such as console output, build artifacts, and so
on.) Jenkins offers two criteria:

1. Driven by age. You can have Jenkins delete a record if it reaches a
certain age (for example, 7 days old.)

2. Driven by number. You can have Jenkins make sure that it only
maintains up to N build records. If a new build is started, the oldest
record will be simply removed.

Jenkins also allows you to mark an individual build as 'Keep this log forever, to
exclude certain important builds from being discarded automatically. The last
stable and last successful build are always kept as well.

This build is parameterized '@'
Disable Build (Mo new builds will be executed until the project is re-enabled.) ®
Execute concurrent builds if necessary ()

[92]

Chapter 3

9. Scrolling down further, you will see the Advanced Project Options section
and the Source Code Management section. Skip them for now as we don't
need them.

Advanced Project Options

Quiet period '@,‘
Retry Count ®
Block build when upstream project is building '@'
Block build when downstream project is building ®
Use custom workspace '@'
Dizplay Name)
Keep the build logs of dependencies ®

Source Code Management

*' None
Cvs
CVS Projectzet

Subversion

We will discuss more about the Advanced Project
Options and the Source Code Management section in
the upcoming chapters.

Installing plugins will show the number of parameters
s available under these sections.

For example, installing the Git plugin will bring a new
parameter under the Source Code Management section
that connects Jenkins with Git.

10. On scrolling down further, you will see the Build Triggers option.

[93]

Configuring Jenkins

11. Under the Build Triggers section, select the Build periodically option and
addH 23 * * = inside the Schedule field. We would like our Jenkins job to
run daily around 11:59 PM throughout the year.

Build Triggers

Build after other projects are built (7)
4 Build periodically ®
Schedule Hagess
Iij:l
P
Would last have run at Wednesday, 21 October, 2015 11:36:16 PM
IST; would next run at Thursday, 22 October, 2015 11:36:16 PM IST.
Poll SCM (7]
_— L

The schedule format is Minute (0-59) Hour (0-23) Day (1-
31) Month (1-12) Weekday (0-7). In the weekday section, 0
& 7 are Sunday.

You might ask the significance of the symbol H in place of
the minute. Imagine a situation where you have more than
. 10 Jenkins jobs scheduled for the same time, say 59 23 *
% * *_ There is a chance Jenkins will get overloaded when
L all the Jenkins jobs start at once. To avoid this, we use an
option H in the minute place. By doing so, Jenkins starts
each job with a gap of 1 minute.

For example, use the Hoption (H H * * *)toavoida
situation where you have multiple projects inside Jenkins,
with each project containing jobs that perform nightly-
builds scheduled at 00:00 hours (0 0 * * *).

12. Moving further down brings you to the most important part of the job's
configuration: the Build section.

[94]

Chapter 3

Adding a build step

Build steps are sections inside the Jenkins jobs that contain scripts, which perform
the actual task. You can run a Windows batch script or a shell script or any script for
that matter. The steps are as follows:

1. Click on the Add build step button and select the Execute Windows batch
command option.

Build
Add build step

Execute Windows batch command
Execute shell
Invoke Ant

Invoke top-level Maven targets

2. Inthe Command field, add the following command. This build step will take
us to the $temp% directory and will list its contents. The code is as follows:

REM Echo the temp directory

echo %temp%

REM Go to the temp directory
cd %temp%

REM List all the files and folders inside the temp directory
dir /B

[95]

Configuring Jenkins

The following screenshot displays the Command field in the Execute
Windows batch command option:

Build

Execute Windows batch command (7]
Command REM Echo the temp directory
acho %tempX

REM Go to the temp directory
cd Htemp®

REM List all the files and folders inside the temp
directory
dir /B

See the list of available envimnment variables

Instead of giving a complete path to the temp directory,
I used $temp$%, which is a system environment variable

that stores the path to the temp directory. This is one

beautiful feature of Jenkins where we can boldly use the
system environment variables.

3. You can create as many builds as you want, using the Add build step button.
Let's create one more build step that deletes everything inside the $temp%
directory and then lists its content after deletion:

REM Delete everything inside the temp directory
del /S %temp%*

REM List all the files and folders inside the temp directory
dir /B

The following screenshot displays the Command field in the Execute
Windows batch command option:

[96]

Chapter 3

Execute Windows batch command ®
Command REM Delete everything inside the temp directory
del /S Xtemp®*

REM List all the files and folders inside the temp

directory
dir /B
i
See the list of available envionment varables
Delete

4. That's it. To summarize, the first build takes us to the $temp% directory and
the second build deletes everything inside it. Both the builds list the content

of the temp directory.

Adding post-build actions

Perform the following steps to add post-build actions:

1. Scroll down further and you'll come across the Post-build Actions option.

Post-build Actions

Add post-build action -

2. Click on the Add post-build action button and select the E-mail Notification

option from the menu.

Aggregate downstream test results
Archive the artifacts

Build other projects

Publish JUnit test result report

Fublish Javadoc

Record fingerprints of files to track usage
E-mail Notification

Post-br

Add post-build action =

[97]

Configuring Jenkins

3. In the Recipients field, add the list of e-mail addresses (team members),
separated by a space.

Post-build Actions

E-mail Notification (2]
Recipients
P someone@someone.org
Whitespace-separated list of recipient addresses. May reference build parameters like
iPARAM. E-mail will be sent when a build fails, becomes unstable or retums to stable.

Send e-mail for every unstable build

Send separate e-mails to individuals who broke the build @

Add post-build action ~

4. There are a few options under the E-mail Notification section that can be
ignored for now. Nevertheless, you can explore them.

5. Click on the Save button, present at the end of the page, to save the
preceding configuration. Failing to do so will scrap the whole configuration.

Configuring the Jenkins SMTP server

Now that we have created a Jenkins job, let's move on to configure the SMTP server
without which the E-mail Notification wouldn't work:

1. From the Jenkins Dashboard, click on the Manage Jenkins link.
2. On the Manage Jenkins page, click on the Configure System link.

[98]

Chapter 3

3. On the configuration page, scroll down until you see the E-mail Notification
section.

E-mail Notification

SMTP server

®

Default user e-mail suffix @
Use SMTP Authentication ®
Use SSL ©
SMTP Port ®

Reply-To Address

Charset UTF-8

Test configuration by sending test e-mail

4. Add the SMTP server and SMTP Port details. Use authentication if
applicable. Add an e-mail address in the Reply-To-Address field in case you
want the recipient to reply to the auto-generated emails.

5. You can test the E-mail Notification feature using the Test configuration by
sending test e-mail option. Add the e-mail address to receive the test e-mail
and click on the Test Configuration button. If the configuration is correct, the
recipient will receive a test e-mail.

¥ Test configuration by sending test e-mail

Test e-mail recipient
© P someone@someone com|

Test configuration

[99]

Configuring Jenkins

Running a Jenkins job

We have successfully created a Jenkins job, now let's run it. The steps are as follows:

1. Go to the Jenkins Dashboard, either by clicking on the Jenkins logo on the
top-left corner or by going to the link http://localhost:8080/jenkins/.

2. We should see our newly created Jenkins job Cleaning Temp_Directory,

listed on the page.
All +
S W Name | Last Success Last Failure Last Duration
L i I
{4141 Cleaning_Temp_Directory | N/A M/A N/A !
Loy ! ;
i Job Health i +
v v Build Button
Job Status Job Name

Although our Jenkins job is scheduled to run at a specific
time (anywhere between 23:00 and 23:59), clicking on the
Build button will run it right away.
The Job Status icon represents the status of the most recent
* build. It can have the following colors that represent various
%&‘ states: blue for Success, red for Failure, and gray for Disabled/
Never Executed.

The Job Health icon represents the success rate of a Jenkins
job. Sunny represents 100 percent success rate, Cloudy
represents 60 percent success rate, and Raining represents 40
percent success rate.

[100]

Chapter 3

3. Click on the Build button to run the job. If everything is right, the job should
run successfully.

4. Here's a screenshot of a successful Jenkins job. On my system, the Jenkins job
took 0.55 seconds to execute. #8 represents the build number. It's 8 because I
ran the Jenkins job eight times.

All +
S W Name | Last Success Last Failure Last Duration
] Cleaning_Temp _Directory 31 min - £8 NIA 0.55 sec 3]

Jenkins build log

Now, let's see the build logs:

1. Hover the mouse over the build number (#8 in our case) and select Console

Output.
All +
S W Name | Last Success Last Failure Last Duration
*] Cleaning_Temp_Directory 54 min - #8 MIA 0.55 sec &
lcon: = Changes
SML Legend \ RSS for all st latest

Console Cutput builds

-+ Edit Build Information

@ Delete Build

[101]

Configuring Jenkins

2. The following screenshot is what you will see. It's the complete log of the
Windows batch script.

QConsole Output

Started by user anonymous

Building in workspace C:\Jenkins‘\jobs\Cleaning_Temp_Directory\workspace
[workspace] % cmd /fc call "C:\Program Files‘\Apache Software
Foundation\Tomcat 8.@%\temp'\hudson8871334469743261573 . bat”

C:\Jlenkins\jobs\Cleaning_Temp_Directory‘\workspace>REM Echo the temp
directory

C:\Jlenkins\jobs\Cleaning_Temp_Directory‘workspacerecho C:\WINDOWS\TEMP
C: \WINDOWS\TEMP

C:\Jlenkins\jobs\Cleaning_Temp_Directory‘workspace>REM Go to the temp
directory

C:\Jlenkins\jobs\Cleaning_Temp_Directory‘\workspacercd C:\WINDOWS\TEMP

C:\Windows\Temp>REM List all the files and folders inside the temp
directory

C:\Windows\Temp>dir /B

CProgram Files (x86)0pera32.8.1948.6%pera_autoupdate.download.lock
CR_ACEBS.tmp

FAB367FF-8277-4007-9622-B4996BF16049-51igs
hsperfdata_DESKTOP-GNVBTVCS

jetty-2.0.0.2-3080-war--any-

jna--1137314184

Low

Microseft Wisual C++ 2010 x64 Redistributable Setup_1€.8.38319
Microseft Wisual Studio Tools for Office Runtime 2818 Setup_l1@.8.52983
MpCmdRun. log

MPInstrumentation

Mpsigstub. log

MPTelemetrySubmit

MRT

ocpera autoupdate

ScheduledHeartbeat. log

SDIAG_d7e969T8-Bdb9-47f8-be69-59ch28Ted224

The build has run under an anonymous group; this is because we
s have not configured any users yet.

[102]

Chapter 3

Jenkins home directory

We saw how to create a simple Jenkins job. We also configured the SMTP server
details for e-mail notifications. Now, let's see the location where all the data related
to the Jenkins jobs gets stored. The steps are as follows:

1. Goto c:\Jenkins)\, our Jenkins home path. This is the place where all of
the Jenkins configurations and metadata is stored, as shown in the following

screenshot:
| Iﬂ = | Jenkins — O *
Home Share View o
<« v 1 | w| @ Search Jenkins o
Quick access Name - Date modified Type Size

& OneDrive jobs 26-10-2015 1918 File folder
nodes 20-008-2015 20:21 File folder
[This PC plugins 20-008-2015 20:21 File folder
& secrets 22-10-2015 23:31 File folder
ESD-USB () updates 26-10-2015 20:43 File folder
=¥ Network userContent 20-09-20135 20:21 File folder

|j .owner 26-10-2015 19:06 WHMER File TKB

|j config 21-10-2015 23:00 XML Document 2 KB

|j Connection Activity monitoring to slaves 26-10-2015 07:46 Text Document 0 KB

|j Download metadata 26-10-2015 20:43 Text Document 0 KB

|j Fingerprint cleanup 26-10-2015 18:00 Text Document 1KB

|j hudson.maven.MavenModulebet 21-10-2015 23 XML Document 1KB

|j hudson.model.UpdateCenter 26-10-2015 20:43 XML Document 1KB

|j hudson.sem.CWS5CM 21-10-2015 23:00 XML Document TKB

|j hudson.sem.SubversionSCM XML Document 1KB

|j hudson tasks.Ant *ML Document 1KB

|j hudson.tasks.Mailer AML Document 1KB

|j hudson.tasks.Maven #ML Document 1KB

|j hudson.tasks.Shell XML Document 1KB

|j hudson.triggers. 5CMTrigger XML Document 1KB

[identity.key.enc 20-09-2015 20:2 EMC File 2KB

|j jenkins.model ArtifactManagerConfigura.. 21-10-2015 22:00 XML Document 1KB

|j jenkins.modelJenkinsLocationConfigura... 21-10-2015 22:00 XML Document 1KB

|j jenkins.mvn.GlobalMavenConfig 21-10-2015 XML Document TKB

|j nodeMonitors 26-10-2015 20:43 XML Document 1KB

|j queuexml.bak 20-10-2015 23:56 BAK File 1KB

|j secret.key 20-09-20135 20:21 KEY File TKB

|j secret.key.not-so-secret 20-09-2015 MNOT-50-5ECRET ... 0 KB

|j Workspace clean-up 26-10-2015 07:46 Text Document 1KB

29 items =

[103]

Configuring Jenkins

2. Now go to the folder named jobs\Cleaning Temp Directory. This is the
place where all the information related to our Jenkins job is stored.

° The config.xml file is an XML document that contains the Jenkins
job configuration. This is something that should be backed up in case
you want to restore a Jenkins job.

° The workspace folder contains the output of a build. In our case, it's
empty because the Jenkins job does not produce any output file or

content.

° The builds folder contains the log information of all the builds that
have ran with respect to the respective Jenkins job.

3. This screenshot displays the config.xml file, the workspace folder, and the

builds folder:

| 4| = | Cleaning_Temp_Directory
Home Share View

< « 1
3t Quick access Mame
X builds
f@ OneDrive
workspace
[This PC | | config
| lastStable

4 ESD-USB (H:)
7| lastSuccessful

¥ Network || nextBuildNumber

Gitems 1item selected 1.19 KB

-

<« Jenkins » jobs » Cleaning_Temp_Directory »

Date modified

—]

v O Search Cleaning_Temp_Direct... @

Type Size

File folder

File folder

XML Decument 2KB
symlink OKB
symlink 0 KB

File 1KB

%
o

'

4. Now, go to the builds\s8 directory, as shown in the next screenshot. The log
file shown contains the same logs that we saw on the Jenkins Dashboard.

| [8 - m] *
Home Share View o
« v 1 « Jenkins » jobs » Cleaning_Temp_Directory » builds » 8] Search 8 »
~
Quick access Name Date modified Type Size
i || build XML Document TKE
4@ OneDrive
| | changelog XML Document 1KB
[ThisPC || log File 2KB
58 ESD-USB {H:)
¥ Network
3items 1 item selected 1.95KB =

[104]

Chapter 3

Jenkins backup and restore

What happens if someone accidentally deletes important Jenkins configurations?
Although this can be avoided using stringent user permissions, which we will see
in the User administration section, nevertheless imagine a situation where the Jenkins
server crashes or someone working on the Jenkins configuration wants to restore to
a previous stable state of Jenkins. This leaves us with a few questions like, what to
back up? When to back up? And how to backup?

From what we have learned so far, the entire Jenkins configuration is stored under
the Jenkins home directory, which is ¢:\jenkins\ in our case. Everything related
to Jenkins jobs like build logs, job configurations, and a workspace gets stored in the
C:\jenkins\jobs folder.

Depending on the requirement, you can choose to backup only the configurations

or choose to back up everything. The frequency of Jenkins backup can be anything
depending on the project requirement. However, it's always good to back up Jenkins
before we perform any configuration changes. Let's understand the Jenkins backup
process by creating a Jenkins job.

Creating a Jenkins job to take periodic
backup

We will create a Jenkins job to take a complete backup of the whole Jenkins home
directory. The steps are as follows:
1. You need the 7-Zip package installed on your machine. Download 7-Zip.exe
from http://www.7-zip.org/.
2. From the Jenkins Dashboard, click on the New Item link.

[105]

http://www.7-zip.org/

Configuring Jenkins

3. Name your new Jenkins job Jenkins Home_Directory_ Backup. Select the
Freestyle project option and click on OK.

Iltem name Jenkins_Home_Directory_Backup

®' Freestyle project
This is the central feature of Jenkins. Jenkins will build your project. combining any SCM
with any build system, and this can be even used for something other than software build.

Maven project

Build a maven project. Jenkins takes advantage of your POM files and drastically
reduces the configuration.

External Job

This type of job allows you to record the execution of a process run outside Jenkins,
even on a remote machine. This is designed so that you can use Jenkins as a dashboard
of your existing automation system. See the documentation for more details.

Multi-configuration project

Suitable for projects that need a large number of different configurations, such as testing
on multiple environments, platform-specific builds, etc.

Copy existing Item
Copy from

OK

4. On the configuration page, add some description say, Periodic Jenkins
Home directory backup.

5. Scroll down to the Build Triggers section and select the Build periodically
option.

6. AddH 23 * * 7in the Schedule section.

Build Triggers

Build after other projects are built (7]
¢! Build periodically ®
Schedule m

®

P

Would last have run at Sunday, 25 October, 2015 11:04:44 PM IST;
would next run at Sunday, 1 November, 2015 11:04:44 PM IST.

[106]

Chapter 3

_ We want our Jenkins backup to take place every Sunday
% somewhere between 23:00 to 23:49 hours. You can opt
o for a daily backup, or you can simply run the Jenkins job
whenever you want to take a backup.

7. Scroll down to the Build section. Create a new build by selecting Execute
Windows batch command from Add build step.
Build

Add build step

Execute Windows batch command
Execute shell
Invoke Ant

Involke top-level Maven targets

8. Add the following content inside the Command section:

REM Store the current date inside a variable named "DATE"
for /f %%i in ('date /t') do set DATE=%%i
REM 7-Zip command to create an archive

"C:\Program Files\7-Zip\7z.exe" a -t7z C:\Jenkins Backup\
Backup %DATE%.7z C:\Jenkins*

[107]

Configuring Jenkins

9. The following screenshot displays the Command field in the Execute
Windows batch command option:

Build

Execute Windows batch command (7]

Command REM Store the current date inside a variable named"DATE"

for /f %%1i in ('date /t') do set DATE=%%i

REM 7-Zip command to create an archive

See the list of avsilable snvinnment variables

The following line of code stores the output of date /t in a variable DATE.
for /f %%i in ('date /t') do set DATE=%%1i

The following command is responsible for creating an archive of the
complete Jenkins home directory. It's a single-line command:

"C:\Program Files\7-Zip\7z.exe" a -t7z C:\Jenkins Backup\
Backup %BUILD NUMBER%_ %DATE%.7z C:\Jenkins*

Here:

° C:\Program Files\7-Zip\7z.exe is the path to the 7-Zip executable

° ais a parameter that we pass to the 7z.exe API, asking it to create
an archive

° _t7zis the archive format that we have chosen

° C:\Jenkins Backup\Backup %BUILD NUMBER% $%DATES%.7z is the
backup location

° We have opted to create an archive named Backup_<build
number>_<dates>. 7z inside the C:\Jenkins_Backup\ directory

° Finally, c:\Jenkins* represents the content that we want
to archive

The date /t command is a Windows DOS command to
s get the current date.

[108]

Chapter 3

10. After adding the code inside the Command section, scroll to the end of the
page and click on the Save button.

11. You will be taken to the jobs homepage, as shown in the following screenshot:

Back to Dashboard . . i
Project Jenkins_Home_Directory_Backup

= Changes [add description

I8 workspace Disable Project

£) Build Now . .
Workspace
D000,

O status

(Y Delete Project

2. Configure —" Recent Changes
!
Build Histo trend = .
v Permalinks

EJ BSS for all £ RSS for failures

12. Click on the Build Now link to run the Jenkins job. Although it's scheduled
to run every day around 23:00 hours, there is no harm in running a backup
now.

13. Once you run the build, we can see its progress in the Build History section
as shown in the following screenshot. Here, we can find all the builds that
ran for the respective Jenkins job.

Back to Dashboard) .)
Project Jenkins_Home_Directory_Backup

= Changes [#radd description

W& workspace Disable Project

0, status

{+) Build Now
}2) E Workspace
(Y Delete Project

o 0
#, Configure —5#" Recent Changes

[Smm—|
Build History trend = .
Permalinks
#4 Oct 28,2015 9:52 PM
Cawr aaw 4 -

) RSS for all (J RSS for failures

14. The build is successful once the buffering stops and the dot turns blue.

15. Once the build is complete, hover your mouse over the build number to get
the menu items, as shown in the following screenshot.

[109]

Configuring Jenkins

16. Select the Console Output option. This will take you to the log page.

Q Jenkins_Home_Directary_! %

&« C A [localhost:80

A,
m

£ Jenkins

Jenkins

4% Back to Dashboard
), Status

~= Changes

& workspace

) Build Now

(§ Delete Project

7 Configure

Build History
o #4 Jct28,20159:52 P

~ Changes

g Console Qutput

~_ EditBuild Information

@ Delete Build

Jenkins_Home_Directory_Backup

trend =

i failures

Project Jenkins_Home_Directory_Backup

[#add description

Disable Project
f)
1] Workspace

DN000000,

—#" Recent Changes
S

Permalinks

/4 /console Page generated: Oct 28, 2015 9:52:18 P REST APl
p/d/console

Jenkins ver. 1.629

17. Here's the complete log of the Jenkins job:

[110]

Chapter 3

QConsole Output

Started by user anonymous

Building in workspace C:‘\Jenkins‘jobs‘\lenkins_Home_Directory_Backup‘workspace
[werkspace] % cmd /c call "C:\Program Files\Apache Software Foundation\Tomcat
8.0\temp\hudson5563287782568747482 . bat"

C:\Jenkins‘jobs\Jenkins_Home_Directory_Backup‘workspace»REM Store the current
date inside a variable named"DATE™

C:\Jenkinshjobs\Jenkins_Home_Directory_Backup\workspacexfor /F %i in ('date
/t') do set DATE=%1i

C:\Jenkins\jobs\Jenkins_Home Directory Backup‘workspace»set DATE=29-10-20815

C:\Jenkins‘\jobs\Jenkins_Home_Directory_ Backup‘workspace>REM 7-Zip command to
create an archive

C:\Jenkins‘\jobs\Jenkins_Home_Directory_Backup‘workspace»"C:\Program Files\7-
Ziph\7z.exe" a -t7z C:\Jenkins_Backup‘\Backup_5_29-10-2815.7z C:‘%Jenkins*

7-Zip [64] 15.8% beta : Copyright (c) 1999-2015 Igor Pavlov : 2015-18-16

scanning the drive:
171 folders, 455 files, 43867133 bytes (42 MiB)

Creating archive: C:%\Jenkins_Backup‘Backup 5 29-16-2815.7z
Items to compress: 626

Files read from disk: 422

Archive size: 36736814 bytes (36 MiB)

Everything is Ok

C:\Jenkins‘jobs\Jenkins_Home_Directory_Backup‘workspacerexit @
Finished: SUCCESS

18. From Windows Explorer, go to the C:\Jenkins_Backup directory. We can
see that the backup archive has been created.

| = | Jenkins_Backup - O 4
Home Share View - o
« v » This PC » Local Disk (C:) » Jenkins_Backup v O Search Jenkins_Backup el

s Ouick access MName Date modified Type Size

. @ Backup_5_29-10-2015 29-10-2015 21:53 WinRAR archive 35,875 KB
‘@ OneDrive
0 This PC

[111]

Configuring Jenkins

Restoring a Jenkins backup

Restoring a Jenkins backup is simple:

1. First, stop the Jenkins service running on the Apache Tomcat server.
2. To do this, go to the admin console at http://localhost:8080/.

3. Here's the Apache Tomcat server admin console:

@ Apache Tomcat/8.0.20 x

€& > C A [localhost:28080

Home Documentation Configuration Examples Wiki Mailing Lists Find Help

Apache Tomcat/8.0.26 Wpache Software Foundation

http://www.apache.org/

™ Recommended Reading: Server Status
Security Considerations HOW-TO
- Manager App
/ Manager Application HOW-TO e
Clustering/Session Replication HOW-TO jilostiiananey
Developer Quick Start
Tomcat Setup Realms & AAA Examples Servlet Specifications
First Web Application JDBC DataSources Tomcat Versions
Managing Tomcat Documentation Getting Help
For security, access to the Tomcat 8.0 FAQ and Mailing Lists
manager webapp is restricted i .) L
Users are defined in Documentation The following mailing lists are
Tomcat 8.0 Configuration available:
$CATALINA HOME/conf/tomcat-users.xml
Tomcat Wiki tomcat-announce
In Tomcat 8.0 access to the] B _ Important announcements,
manager application is split FInEJj_ addlt!ongl meor‘tqnt releases, security vulnerability
petween different users. Read configuration information in: notifications. (Low volume).
more... SCATALINA_HOME/RUNNING. txt lomcat-users N
User support and discussion
Release Notes Developers may be interested taglibs-user
in: User support and discussion for
Changelog Apache Taalibs
R _) Tomcat &.0 Bug Database ——
Migration Guide Tomcat §.0 JavaDocs Devalnnmant mailin lict_including e

4. From the admin console, click on the Manager App button.

5. You will be taken to the Tomcat Web Application Manager page.

[112]

Chapter 3

Scroll down and under the Applications table, you should see the
Jenkins service running along with the version number, as shown
in the following screenshot:

- [m] *
@."manager x
€ 2 C f |[}localhost:8080/manager/html/start?path=/jenkins&org.apache.catalina filters.CSIi7 | =
Start | Stop ‘ | Reload H Undeploy | -
None
lexamples specified Servlet and JSP Examples trus g | Expire sessions ‘with idle 2 |3U |
minutes
Start | Stop ‘ | Reload H Undeploy |
[host- None Tomcat Host Manager & 0
manager specified Application ue = | Expire sessions ‘with idle 2 |3U |
minutes
Start | Stop ‘ | Reload H Undeploy |
S None .
{enkins specified Jenkins v1.635 trus g | Expire sessions ‘with idle 2 |3U |
minutes
Start Stop Reload Undeploy
None S
[manager specified Tomcat Manager Application true 2 | Expire sessions ‘with idle = |3g | m
minutes
Deploy directory or WAR file located on server
Context Path (required) | |
XML Configuration file URL: | |
WAR or Directory URL: |
Deploy
WAR file to deploy
Select WAR file to upload | Choose File | Mo file chosen
Deploy
Check to see if a web application has da ry leak on stop, reload or undeploy
Find leaks = This diagnostic check will trigger a full garbage collection. Use it with extreme caution on production systems.
S5L connector configuration diagnostics
Connector ciphers List the confioured ciphers for each connector -

Click on the Stop button to stop the running Jenkins instance. Once it has
stopped, the Jenkins Dashboard will be inaccessible.

Then, simply unzip the desired backup archive into the Jenkins home
directory, which is ¢: \Jenkins\ in our case.

Once done, start the Jenkins service from the Apache Tomcat server's Tomcat
Web Application Manager page by clicking on the Start button.

[113]

Configuring Jenkins

Upgrading Jenkins

Jenkins has weekly releases that contain new features and bug fixes. There are also
stable Jenkins releases called Long Term Support (LTS) releases. However, it's
recommended that you always choose an LTS release for your Jenkins master server.

In this section, we will see how to upgrade Jenkins master server that is installed
inside a container like Apache Tomcat and also a Jenkins standalone master server.

It is recommended not to update Jenkins until and unless you need to.
For example, upgrade Jenkins to an LTS release that contains a bug fix
that you need desperately.

Upgrading Jenkins running on the Tomcat
server

The following are the steps to upgrade Jenkins running on the Tomcat server:

1. Download the latest jenkins.war file from https://jenkins.io/
download/.

LTS Release Weekly Release

LTS (Long-Term Support) releases are A new release is produced weekly to deliver
chosen every 12 weeks from the stream of bug fixes and features to users and plugin
regular releases as the stable release for developers.
that time period.

Changelog | Past Releases Changelog | Past Releases

Download Jenkins

Get 1.642.4 LTS _war or the latest 1.656 weekly release

2. You can also download Jenkins from the Manage Jenkins page, which
automatically list the most recent Jenkins release. However, this is not
recommended.

[114]

https://jenkins.io/download/
https://jenkins.io/download/

Chapter 3

Manage Jenkins

. New version of Jenkins (1.642.4) is available for download (changelog).

T
_/:1

Configure System
Configure global settings and paths.

Configure Global Security
Secure Jenkins; define who is allowed to access/use the system.

Reload Configuration from Disk
Discard all the loaded data in memory and reload everything from file system.
Useful when you modified config files directly on disk.

Manage Plugins
Add, remove, disable or enable plugins that can extend the functionality of Jenkins.

QD

System Information
Displays various environmental information to assist trouble-shooting.

i

System Log
System log captures output from java.util. logging output related to Jenkins.

g

3. From the Jenkins Dashboard, right-click on the Jenkins job Jenkins_Home_
Directory_Backup and select Build Now.

0 Jenkins Home Directory Backu

-;- Changes

@ Delete Project
& Configure

% Job Config History

[115]

Configuring Jenkins

Always run a backup of Jenkins before upgrading
Jenkins.

% This is important because, there should be some
=" mechanism to rollback the Jenkins master setup, just
in case if Jenkins fails to upgrade or the newer version
proves to be unstable.

4. Our Jenkins server is running on Apache Tomcat server. Therefore, go to the
location where the current jenkins.war file is running. In our case, it's C: \
Program Files\Apache Software Foundation\Tomcat 8.0\webapps.

Stop the Jenkins service from the Apache Tomcat server admin console.

Now, replace the current jenkins.war file inside the webapps directory with
the new jenkins.war file that you have downloaded.

7. Start the Jenkins service from the Apache Tomcat server's Tomcat Web
Application Manager page.

8. Go to the Jenkins Dashboard using the link http://localhost:8080/
jenkins.

9. Check the Jenkins version on the Jenkins Dashboard.

FPage generated: Mov 1, 2015 5:44.25 P RESTAFl Jenkins ver. 1.635

[All the Jenkins settings, configurations, and jobs]
i

are intact.

Upgrading standalone Jenkins master on
Windows

The upgrade steps mentioned in this section are for a Jenkins master running as a
Windows service on the Windows operating system.

I have a Jenkins instance running as a Windows service on port 8888. The Jenkins
version is 1.631, as shown in the following screenshot:

[116]

Chapter 3

ﬁ Dashboard [Jenkins) x

€« C f& [} localhost:833s 7o
£ Jenkins

Jenkins
New Item Zradd description
& People Welcome to Jenkins!

= Build History

4/ Manage Jenkins Please create new jobs to get started.

.’{ Credentials

Build Queue =

No builds in the queue.

Build Executor Status o=

1 ldle
2 ldle

E Help us localize this page Page generated: Nov 1,2015 6:02:41 PM RESTAP| Jenkins ver. 1.631

Follow these steps to upgrade Jenkins:

1. Download the latest jenkins .war file from the Jenkins website.

2. As mentioned earlier, run a backup of Jenkins before we upgrade it to a
newer version.

3. Go to the location where Jenkins is installed on your machine. It should be
located at C:\Program Files (x86)\Jenkins.

4. Inside the location C:\Program Files (x86)\Jenkins, you will see the
jenkins.war file. We simply need to replace it with the newly downloaded
jenkins.war file.

5. Before doing so, we need to stop the Jenkins service. To do this, type
services.msc from Windows Run. This will open the Windows Services
page.

[117]

Configuring Jenkins

6. Stop the Jenkins service as shown in the following screenshot. Keep the
Services window open as you may have to come back here to start the
Jenkins service.

Mame Status Startup Type Log On As

Automatic Local System
5} KtmRm for Distributed Transaction Coordinat Start Manual (Trigger Start) MNetwork Service
{,‘} Link-Layer Topology Discovery Mapper Stop Manual Local Service
{,‘} Local Session Manager Pause Automatic Local System

».S‘};Microsoft (R) Diagnostics Hub Standard Colle: s Manual Local System
».‘.‘,f} Microsoft Account Sign-in Assistant Restart Manual (Trigger Start) Local Systemn
£ Microsoft iSCSI Initiator Service Manual Local System
-..';} Microsoft Passport All Tasks » | Manual (Trigger Start] Local System
-..‘;? Microsoft Passport Container Refresh Manual (Trigger Start) Local Service
‘55 Microsoft Software Shadow Copy Provider Manual Local System
{,‘} Microsoft Storage Spaces SMP Properties Manual Metwork Service
».,‘;} Microsoft Windows SMS Router Service. Help Manual (Trigger Start) Local System

»..‘;} MNet. Tep Port Sharing Service Dizabled Local Service

7. Once the Jenkins service is stopped, replace the jenkins.war file present
under C:\Program Files (x86)\Jenkins\ with the new version of the
jenkins.war file.

8. After replacing the file start the Jenkins service from the services window,
you will get the following screen:

o~

MName Status Startup Type Log On As
Local System
{,‘} KtrmRm for Distributed Transaction Coordinator Start al (Trigger Start) Metwork Service
»..‘;} Link-Layer Topology Discovery Mapper Stop al Local Service
».‘.‘,f} Local Session Manager Paise matic Local System
£ Microsoft (R) Diagnostics Hub Standard Collector Se Resume al Local System
-..';} Microsoft Account Sign-in Assistant al (Trigger Start) Local Systern
-..‘;? Microsoft i5C5l Initiator Service festart al Local System
-&} Microsoft Passport All Tasks » pal (Trigger Start) Local System
{,‘} Microsoft Passport Container al (Trigger Start) Local Service
<. Microsoft Software Shadow Copy Provider Refresh al Local System
S Py ¥
»..‘;} Microsoft Storage Spaces SMP Properties al Metwork Service
-..‘;? Microsoft Windows SMS Router Service. Hel al (Trigger Start) Local System
£ Net.Tep Port Sharing Service =P led Local Service

9. Access the Jenkins console using the link http://localhost:8080/jenkins
to see the changes.

[118]

Chapter 3

10. As you can see now, our new Jenkins has been upgraded to Version 1.635:

- O *
g:; Dashboard [Jenkins] *
L C fn localhost:882¢ =
Er L.
Jenkins
Jenkins ENABLE AUTO REFRESH
New Item #add description
8 oo .
& People Welcome to Jenkins!
= Build History
7 Manage Jenkins Please create new jobs to get started.
.@ Credentials
Build Queue =

Mo builds in the queue.

Build Executor Status =

1 Idle
2 ldle

@ Help us localize this page Page generated: Nov 1,20156:21:45 PM REST APl Jenkins ver. 1.635

Upgrading standalone Jenkins master
running on Ubuntu

Upgrading Jenkins on Ubuntu is simple. Make sure Java is installed on the machine
and the JAVA HOME variable is set.

Upgrading to the latest version of Jenkins
To install the latest version of Jenkins, perform the following steps in sequence.
However, this is not recommended.
1. Check for admin privileges; the installation might ask for the admin
username and password.

2. Backup Jenkins before the upgrade.

[119]

Configuring Jenkins

3. Execute the following commands to update Jenkins to the latest version
available:

wget -q -O - https://jenkins-ci.org/debian/jenkins-ci.org.key |
sudo apt-key add -

sudo sh -c 'echo deb http://pkg.jenkins-ci.org/debian binary/ > /
etc/apt/sources.list.d/jenkins.list’

sudo apt-get update

sudo apt-get install jenkins

Upgrading to the latest stable version of Jenkins

If you prefer to upgrade to a new stable version of Jenkins, then perform the
following steps in sequence:

1. Check for admin privileges; the installation might ask for admin username
and password.

Backup Jenkins before the upgrade.

Execute the following commands to update Jenkins to the latest stable
version available:

wget -g -O - https://jenkins-ci.org/debian-stable/jenkins-ci.org.
key | sudo apt-key add -

sudo sh -c 'echo deb http://pkg.jenkins-ci.org/debian-stable
binary/ > /etc/apt/sources.list.d/jenkins.list’'

sudo apt-get update

sudo apt-get install jenkins

Upgrading Jenkins to a specific stable version

If you prefer to upgrade to a specific stable version of Jenkins, then perform the
following steps in sequence. In the following steps, let's assume I want to update
Jenkins to v1.580.3:

1. Check for admin privileges; the installation might ask for the admin
username and password.
Backup Jenkins before the upgrade.

Execute the following commands to update Jenkins to the latest stable
version available:

wget -g -O - https://jenkins-ci.org/debian-stable/jenkins-ci.org.
key | sudo apt-key add -

[120]

Chapter 3

sudo sh -c 'echo deb http://pkg.jenkins-ci.org/debian-stable
binary/ > /etc/apt/sources.list.d/jenkins.list’

sudo apt-get update
sudo apt-get install jenkins=1.580.3

You might end up with the following error:
Reading package lists... Done
Building dependency tree

Reading state information... Done

E: Version '1.580.3' for 'jenkins' was not found

In that case, run the following command to check the list of available versions:

apt-cache showpkg jenkins

This will give the following output:

® 2 @ nikhil@nikhil-VirtualBox: ~/Downloads

nikhil@nikhil-VirtualBox:~/DownloadsS apt-cache showpkg jenkins
: jenkins

1.642.4 (/var/lib/apt/lists/pkg.jenkins-ci.org_debian-stable_binary_Packages)
Description Language:
File: fvar/lib/apt/lists/pkg.jenkins-ci.org_debian-stable_binar
MD5: 483e336eal1484a3aa®@d84b76602263F7

1.596.3 (/var/lib/dpkg/status)

Description Language:
File: fvar/lib/apt/lists/pkg.jenkins-ci.org_debian-stable_binar
MD5: 483e336eal11484a3aa0@d84b76602263F7

Reverse Depends:

libtap-formatter-junit-perl, jenkins
Dependencies:
1.642.4 - daemon (@ (null)) adduser (® (null)) procps (8 (null)) psmisc (& (null
hudson (® (null)) hudson:1386 (© (null)) hudson (® (null)) hudson:i386 (® (null)
1.596.3 - daemon (@ (null)) adduser (@ (null)) psmisc (@ (null)) default-jre-hea
) hudson (® (null)) hudson:i386 (@ (null))
Provides:

nikhil@nikhil-virtualBox:~/Downloads$ sudo apt-get install jenkins=1.642.4

Notice the Jenkins version suggested; it's 1.642.4 and 1.596.3.

If you are ok with any of the available versions, select them and re-run the

following command:

sudo apt-get install jenkins=1.596.3

[121]

Configuring Jenkins

9. You might get the following error:

@ ® @ nikhil@nikhil-virtualBox: ~/Downloads

nikhil@nikhil-virtualBox:~/Downloads$ sudo apt-get install jenkins=1.596.3
Reading package lists... Done

Building dependency tree

Reading state information... Done

jenkins is already the newest version.
You might want to run 'apt-get -f install' to correct these:
The following packages have unmet dependencies:
jenkins : Depends: daemon but it is not going to be installed
E: Unmet dependencies. Try 'apt-get -f install' with no packages (or specify a s
nikhil@nikhil-virtualBox:~/Downloads$ apt-get -f install

10. Run the following command:

sudo apt-get -f install
11. This will give the following output:

nikhil@nikhil-VirtualBox:~/Downloads$S sudo apt-get -f install
Reading package lists... Done
Building dependency tree
Reading state information... Done
Correcting dependencies... Done
The following extra packages will be installed:
daemon
The following NEW packages will be installed:
daemon
0 upgraded, 1 newly installed, @ to remove and 333 not upgraded.
1 not fully installed or removed.
Need to get 98.2 kB of archives.
After this operation, 287 kB of additional disk space will be used.
Do you want to continue? [Y/n] y
Get:1 http://in.archive.ubuntu.com/ubuntu/ trusty/universe daemon amd64 ©.6.4-1 [98.2 kB]
Fetched 98.2 kB in 1s (69.9 kB/s)
Selecting previously unselected package daemon.
(Reading database ... 168557 files and directories currently installed.)
Preparing to unpack ... /daemon_0.6.4-1_amd64.deb ...
Unpacking daemon (0.6.4-1) ...
Processing triggers for man-db (2.6.7.1-1ubuntul) ...
Setting up daemon (0.6.4-1) ...
setting up jenkins (1.596.3) ...
* Starting Jenkins Continuous Integration Server jenkins
Processing triggers for ureadahead (©.100.0-16) ...

12. Now run the command to install Jenkins again:

sudo apt-get install jenkins=1.596.3

13. This should install Jenkins on your Ubuntu server.

[122]

Chapter 3

If the apt -cache showpkg Jenkins command does not list the
required Jenkins version you desire, you have the following options:

Download the jenkins.war (required version) from the following
link: http://mirrors.jenkins-ci.org/war-stable/.
a Stop the Jenkins service using the command sudo service
R jenkins stop.
Replace the jenkins.war file present inside /usr/share/
jenkins with your newly downloaded Jenkins.war file.

Start the Jenkins service using the command sudo service
jenkins start.

Script to upgrade Jenkins on Windows

We can create a Windows batch script or a Perl script or any other script outside
Jenkins to upgrade it. The Windows batch script discussed below is capable of
updating a standalone Jenkins master running on Windows to the latest version of
Jenkins available. The steps are as follows:

1. Download the curl.exe application for Windows from https://curl.
haxx.se/download.html.

2. Open Notepad and paste the following code inside it. Save the file as
Jenkins Upgrade.bat.

3. Set the variables Backup Dir, Jenkins Home, jenkinsURL, and curl
accordingly.

4. Also, set the Jenkins web address accordingly:

@echo off

REM === pre-declared variables ===
set Backup Dir="C:\Jenkins Backup"
set Jenkins Home="C:\Jenkins"

set jenkinsURL="http://mirrors.jenkins-ci.org/war/latest/jenkins.
war"

set curl="C:\Users\nikhi\Downloads\curl.exe"

Echo === Stopping Current Jenkins Service ===
sc stop Jenkins

Echo === Sleeping to wait for file cleanup ===

[123]

http://mirrors.jenkins-ci.org/war-stable/
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html

Configuring Jenkins

ping -n 4 http://localhost:8080 > NUL

Echo === clean files ===
copy /Y %Jenkins Home$%\jenkins.war %$Backup Dir%\jenkins.war.bak
del /Y %Jenkins Home$%\jenkins.war

Echo === download new files ===
cd %Jenkins Home%
$curl% -LOk %jenkinsURL$%

Echo *** Starting new upgraded Jenkins
sc start Jenkins

Echo *** Sleeping to wait for service startup
ping -n 4 http://localhost:8080 > NUL

5. Try running the Windows batch script as an administrator.

In the preceding Windows batch script, set the jenkinsURL
variable to point to a stable version of jenkins.war using the
following link http://mirrors.jenkins-ci.org/war-
stable/latest/.

% To update your Jenkins master server to a particular stable release,

L set the jenkinsURL variable to a stable release version link. For
example, to install Jenkins 1.642.4, use the link http://mirrors.
jenkins-ci.org/war-stable/1.642.4/jenkins.war.

To get the list of stable Jenkins releases, use the link http: //
mirrors.jenkins-ci.org/war-stable/.

Script to upgrade Jenkins on Ubuntu
The shell script discussed in the following steps is capable of updating a standalone
Jenkins master running on Ubuntu to the latest version of Jenkins available.
1. Open gedit and paste the following code inside it. Save the file as
Jenkins Upgrade. sh.

2. Set the variables Backup_Dir, Jenkins_Home, and jenkinsURL accordingly.

[124]

http://mirrors.jenkins-ci.org/war-stable/latest/
http://mirrors.jenkins-ci.org/war-stable/latest/
http://mirrors.jenkins-ci.org/war-stable/1.642.4/jenkins.war
http://mirrors.jenkins-ci.org/war-stable/1.642.4/jenkins.war
http://mirrors.jenkins-ci.org/war-stable/
http://mirrors.jenkins-ci.org/war-stable/

Chapter 3

Also, set the Jenkins web address accordingly:
#!/bin/bash

pre-declared variables

Backup Dir="/tmp/Jenkins Backup"
Jenkins Home="/usr/share/jenkins"
jenkinsURL="http://mirrors.jenkins-ci.org/war/latest/jenkins.war"

Stopping Current Jenkins Service
sudo service jenkins stop

Sleeping to wait for file cleanup
ping -q -c5 http://localhost:8080 > /dev/null

clean files
sudo cp -f $Jenkins Home/jenkins.war $Backup Dir/jenkins.war.bak
sudo rm -rf $Jenkins Home/jenkins.war

Download new files
cd $Jenkins Home
sudo wget "$jenkinsURL"

Starting new upgraded Jenkins
sudo service jenkins start

Sleeping to wait for service startup
ping -q -c5 http://localhost:8080 > /dev/null

Try running the shell script with a user having sudo access.

In the preceding shell script, set the jenkinsURL variable to
point to a stable version of jenkins.war using the following link
http://mirrors.jenkins-ci.org/war-stable/latest/.

. Toupdate your Jenkins master server to a particular stable
Q release, just set the jenkinsURL variable to a stable release
L version link. For example, to install Jenkins 1.642.4, use the link
http://mirrors.jenkins-ci.org/war-stable/1.642.4/
jenkins.war.

To get the list of stable Jenkins releases, use the link http: //
mirrors.jenkins-ci.org/war-stable/.

[125]

http://mirrors.jenkins-ci.org/war-stable/latest/
http://mirrors.jenkins-ci.org/war-stable/1.642.4/jenkins.war
http://mirrors.jenkins-ci.org/war-stable/1.642.4/jenkins.war
http://mirrors.jenkins-ci.org/war-stable/
http://mirrors.jenkins-ci.org/war-stable/

Configuring Jenkins

Managing Jenkins plugins

Jenkins derives most of its power from plugins. As discussed in the previous chapter,
every plugin that gets installed inside Jenkins manifests itself as a parameter, either
inside Jenkins system configurations or inside a Jenkins job. Let's see where and how
to install plugins.

In the current section, we will see how to manage plugins using the Jenkins plugins
manager. We will also see how to install and configure plugins.

The Jenkins Plugins Manager
The Jenkins Plugin Manager section is a place to install, uninstall, and upgrade
Jenkins plugins. Let us understand it in detail:

1. From the Jenkins Dashboard, click on the Manage Jenkins link.

2. From the Manage Jenkins page, click on the Manage Plugins link.

You can also access the same Jenkins Plugin Manager
%@‘\ page using the link http://localhost:8080/
’ jenkins/pluginManager/.

3. The following screenshot is what you see when you land on the Jenkins
Plugin Manager page.

[126]

Chapter 3

4 Back to Dashboard

#. Manage Jenkins

Filter: | <,
Updates Available nstalled Advanced
Install Name |
Credentials Plugin
This plugin allows you to store credentials in Jenkins.
CVS Plug-n

This bundled plugin integrates Jenkins with CV'S version control system.
Javadoc Plugin

This plugin adds Javadoc support to Jenkins.
JUnit Plugin
Allows JUnit-format test results to be published.
Mailer Plugin
This plugin allows you to configure email notifications. This is a break-out of the

original core based email component.
Matrix Authorization Strategy Plugin

Offers matrix-based security authorization strategies (global and per-project).
Matrix Project Plugin

Multi-configuration (matrix) project type.
Maven Integration plugin

Jenkins plugin for building Maven 2/3 jobs via a special project type.

MMASD Marknr Enrmatter Phimin

Update information obtained: 1 day 7 hr ago

4. The following four tabs are displayed in the screenshot:

Version

1.24

212

1.3

1.9

1.16

2121

Check now

Installed

1.18

21

11

1.2-beta-4

1.1

° The Updates tab lists updates available for the plugins installed on
the current Jenkins instance.

° The Available tab contains the list of all the plugins available for
Jenkins across the Jenkins community.

© The Installed tab lists all the plugins currently installed on the
current Jenkins instance.

update Jenkins plugins manually.

5. Let's see the Advanced tab in detail by clicking on it.

The Advanced tab is used to configure Internet settings and also to

[127]

Configuring Jenkins

6. Right at the beginning, you will see a section named HTTP Proxy
Configuration. Here, you can specify the HTTP proxy server details.

7. Provide the proxy details pertaining to your organization, or leave these
fields empty if your Jenkins server is not behind a firewall.

Advanced

HTTP Proxy Configuration

Server ®

Port .@.

User name (2]

Password

No Proxy Host (2]
— 5

Test URL

Validate Proxy

Jenkins uses the HTTP Proxy Configuration details when
% you try to update a Jenkins plugin from the Update tab, or
g when you install new plugins from the Available tab.

[128]

Chapter 3

8. Just below the HTTP Proxy Configuration section, you will see the Upload
Plugin section. It provides the facility to upload and install your own
Jenkins plugin.

Upload Plugin

You can upload a .hpi file to install a plugin from outside the central
plugin repository.

File: | Choose File | Mo file chosen

Upload

The Upload Plugin section can also be used to install an existing Jenkins
plugin that has been downloaded from https://updates.jenkins-
ci.org/download/plugins/.

You may ask why? Imagine a situation where you have a Jenkins instance
% running inside a local area network, but with no access to the Internet.

In such scenarios, you will first download the required Jenkins plugin
from the online Jenkins repository, and then you will transport it to the
Jenkins master server using a removable media. Finally, you will use the
Upload Plugin section to upload the required Jenkins plugin.

Installing a Jenkins plugin to take periodic
backup

Let's try installing a plugin. In the previous sections, we saw a Jenkins job that
creates a backup. Let's now install a plugin to do the same:

1. On the Jenkins Plugin Manager home page, go to the Available tab.
2. In the Filter field, type Periodic Backup.

[129]

https://updates.jenkins-ci.org/download/plugins/
https://updates.jenkins-ci.org/download/plugins/

Configuring Jenkins

3. Tick the checkbox beside the Periodic Backup plugin and click on Install
without restart. This will download the plugin and then install it.

- [m} >
ﬁ Update Center [Jenkins] =
€ >2CAH i

[M localhost:8080/jenkins/pluginManage

aila w =
-
@ Jenkins
Jenkins Plugin Manager
4% Back to Dashboard

7 Manage Jenkins

Filter: | ©, Periodic Backup
Available
Install | Name Version
Periodic Backup 13
Install without restart
Check now

Download and install aft tart
Update information obtained: 27 min ago

E Help us localize this page

Page generated: Nov 2, 2015 11:04:17 PM

REST APl Jenkins ver. 1.635

4. Jenkins immediately connects to the online plugin repository and starts

downloading and installing the plugin, as shown in the following screenshot:

[130]

Chapter 3

Y

4% Back to Dashboard
#.. Manage Jenkins

Manage Plugins

Installing Plugins/Upgrades

Preparation
» Checking internet connectivity
» Checking update center connectivity
» Success

Periodic Backup Downloaded Successfully. Will be activated during the next boot

Periodic Backup g Success

E_:'> Go back to the top page
(you can start using the installed plugins right away)

&> Restart Jenkins when installation is complete and no jobs are running

Jenkins first tried to check its connectivity to the Jenkins
online plugin repository. After a successful connection, it
tried to download the desired plugin and at last the plugin

was installed.
s

This was a simple example. But there are cases where a
Jenkins plugin has dependencies on other Jenkins plugins.
In those cases, installing the plugin also means installing the
dependencies. Nevertheless, it's automatically taken care of.

5. For the plugin to work, we need to restart the Jenkins server.
To restart Jenkins, go to the Apache Tomcat server home page and
click on the Manage App button.

7. From the Tomcat Web Application Manager page, restart Jenkins by first
clicking on the Stop button. Once Jenkins stops successfully, click on the
Start button.

Start | Stop | | Reload || Undeploy
ljenkins | Wone specified |Jenkins v1.642.3 |true| 0

Expire sessions | with idle = |30

minutes

[131]

Configuring Jenkins

Y

, You can also click on Reload button to restart Jenkins. After a
@@j%‘\ restart, the Jenkins dashboard becomes inactive for some time and

then resumes.

Configuring the periodic backup plugin

We have successfully installed the periodic backup plugin. Now, let's configure it:

1. From the Jenkins Dashboard, click on the Manage Jenkins link.

2. On the Manage Jenkins page, you will see the Periodic Backup
Manager link.

3. Clicking on the Periodic Backup Manager link will take you to the Periodic
Backup Manager page as shown in the following screenshot:

- O
Q Manage Jenkins [Jenkins]
L C A | [localhost:8080/jenkins/manage i
Jenkins ENABLE AUTO REFRESH

System Information
Displays various environmental information to assist trouble-shooting

System Log
System log captures output from java.util.logging output related to Jenkins

Load Statistics
Check your resource utilization and see if you need more computers for your builds

Periodic Backup Manager
Periodically backup your Hudson data and save the day

In-process Script Approval
Allows a Jenkins administrator to
Jenkins process and so could bypass

which run inside the

Prepare for Shutdown
Stops executing new builds, so that the system can be eventually shut down safely

@ Help us localize this page Page generated: Nov 3, 2015 6:33:36 PM REST APl Jenkins ver. 1.635

4. Clicking on Backup Now! creates a backup. However, it won't work
presently as we have not configured the backup plugin.

[132]

Chapter 3

5. The Configure link will allow you to configure the plugin.
- o X
ﬁ Periodic Backup Configur:
€« C' A [localhost:8080/jenkins/periodicbackup Al

Jenkins Periodic Backup Manager

&

The Periodic Backup plugin has not been configured yet. Click here to configure it

@ Help us localize this page Page generated: Nov 3, 2015 6:36:10 PM Jenkins ver. 1.635

Back to Dashboard
Restore
Backup Now!

Configure

6.

Click on the Configure link and you will see many options to configure your
backup plugin:

o

Temporary Directory: This is where Jenkins will temporarily expand
the archive files while restoring any backup. As you can see, I used
an environment variable $temp%, but you can give any path on

the machine.

[133]

Configuring Jenkins

[e]

Backup schedule (cron): This is the schedule that you want your
backup to follow. [used H 23 * * 7, which is every Sunday
anywhere between 23:00 to 23:59 hours throughout the year.

Maximum backups in location: This is the total number of backups
you want to store in a particular backup location. Does that mean we
can have more than one backup location? Yes. We will see more on
this soon.

Store no older than (days): This ensures any backup in any
location which is older than the number of days specified is
deleted automatically.

Root Directory C:\Jenkins
Temporary Directory %temp)
Backup schedule (cron) H23++7
is cron is
This cron is OK Validate cron syntax
@
Maximum backups in location g @
Store no older than (days) 10 @

7. Scroll down to the File Management Strategy section. You will see the
options to choose from FullBackup and ConfigOnly. Choose FullBackup.

File Management Strategy

ConfigOnly
*! FullBackup

FullBackup takes a backup of the whole Jenkins
home directory. ConfigOnly takes only the backup of
configurations and excludes the builds and logs.

[134]

Chapter 3

8. In the following screenshot, you will see Storage Strategy section. Click on it
and you will have options to choose from . zip, . targz, and NullStorage. I
chose the . zip archive.

Storage Strategy

Add Storage -

MullStorage
TarGzStorage
ZipStorage

9. Clicking on the ZipStorage strategy provides us an option to select the Multi
volume zip file, that is, one huge, single zip file split into many.

Storage Strategy

ZipStorage
Multi volume (7]

Add Storage -

10. Just below Storage Strategy, you can see the Backup Location section where
you can add as many backup locations as you want.

Backup Location

Add Location ~

11. In my example, I added two backup locations, ¢:\Jenkins_Backup and
C:\Jenkins_Backup2 respectively.

[135]

Configuring Jenkins

12. As you can see from the following screenshot, I enabled both the locations.

Backup Location

LocalDirectory
Backup directory path | ¢ jopking Backup (7]

¥ Enable this location ©

Validate path

Delete

LocalDirectory
Backup directory path | o ;o nuing Backup2 @

¥| Enable this location '@'

Validate path

Delete

Add Location -

13. Once done, click on the Save button.

Click on the Validate path to validate the paths. Jenkins will not
store more than five backups in any of the preceding backup

locations; recall our option Maximum backups in location =
g 5. By the time its gets overloaded, the backups will be deleted

monthly; recall our option Store no older than (days) = 30.

User administration

So far, all our Jenkins Jobs were running anonymously under an unidentified user.
All the configurations that we did inside Jenkins were also done anonymously. But
as we know, this is not how things should be. There needs to be a mechanism to
manage users and define their privileges. Let's see what Jenkins has to offer in the
area of user administration.

[136]

Chapter 3
Enabling global security on Jenkins

The Configure Global Security section is the place where you get various options to
secure Jenkins. Let see it in detail.

1. From the Jenkins Dashboard, click on the Manage Jenkins link.

2. From the Manage Jenkins page, click on the Configure Global Security link.

You can also access the Configure Global Security
%j%“ page by using the link http://localhost:8080/

jenkins/configureSecurity/.

3. The following screenshot shows what the Configure Global Security page
looks like:

ﬁ Configure Global Security X

- m} x
€« C f [localhost:2020 1s/config

Jenkins Configure Global Security

/= configure Global Security

Enable security @'
Markup Formatter Plain text

Treats allinput as plain text. HTML unsafe characters like < and & are escaped to theirres

Prevent Cross Site Request Forgery exploits

pective character entitie:

@
Use browser for metadata download

E Help us localize this page

Page generated: Nov 3, 2015 9:07:27 PM Jenkins ver. 1.635

3

[137]

Configuring Jenkins

4. Click on the Enable security checkbox and a new set of options will be
available to configure.

5. Leave the TCP port for JNLP slave agents option as it is (Random).

6. Leave the Disable remember me option unchecked.

_”] Configure Global Security

#| Enable security (2]
TCP port for JMLP slave agents Fixed : ® Random Disable @&
Disable remember me .@j

Enable the Disable remember me option if you don't
—" want the browser to remember the usernames.

7. Go to the Security Realm subsection which is under the Access Control
section. In our example, we will use the Jenkins' own user database option
to manage users and permissions.

The Delegate to servlet container option allows you to
inherit all the users from the servlet containing your Jenkins
master server (Apache Tomcat server).

% The Jenkins' own user database option allows you to create
g and define your own set of user accounts and permissions.

If you have an active directory server configured for your
organization, with all the users in it, use the LDAP option.

8. Select the Jenkins' own user database and you will get another option,
which allows users to sign up. This is shown in the following screenshot:

[138]

Chapter 3

Access Control Security Realm

Delegate to servlet container @

® Jenkins' own user database '@'

¢ Allow users to sign up (7]
LDAP

9. Come down to the Authorization section, and you will see the
following options:

Authorization

® Anyone can do anything @
Legacy mode @
Logged-in users can do anything @
Matrix-based security (2)
Project-based Matrix Authorization Strategy { :J

10. Choose the Matrix-based security option.

11. The following illustration is partial, that means there is more towards the
right side.

12. To add users, enter the user names in the User/group to add a field, and click
the Add button. For now, do not add any users.

* Matrix-based security

| Overall Credentials
User/group

AdministerConfigureUpdateCenterReadRunScriptsUploadPlugins CreateDeleteManageDomains UpdateView
Anonymous

User/group to add: Add

. InaMatrix-based security setting, all the Users/Groups are listed across
% rows and all the Jenkins tasks are listed across columns. It's a matrix of
< users and tasks. This matrix makes it possible to configure permissions at
the task level for each user.

[139]

Configuring Jenkins

13. Select all the checkboxes for the Anonymous user. By doing this, we are
giving the Anonymous user admin privileges.

] Overall
User/group
AdministerConfigureUpdateCenterReadRunScriptsUploadPlugins
Anonymous ' ' v 4 4
Credentials Slave

CreateDeleteManageDomainsUpdateViewBuildConfigureConnectCreateDeleteDisconnect
Ld L Ld + LA Ld L Ld L L

Job Run View SCM

BuildCancelConfigureCreateDeleteDiscoverRead\WorkspaceDeletelUpdateConfigureCreateDeleteRead Tag
7 ; 7 v ; r r 7 7) 7 ; T

14. Click on the Save button at the bottom of the page once done.

Creating users in Jenkins

Currently, we do not have any users configured on our Jenkins master. At this point,
everyone is free to access Jenkins and perform any given action. This is because the
Anonymous group has all the privileges.

Creating an admin user

So, let us first create a user named admin. Then we will move all the privileges from
the Anonymous group to our new admin user.

1. From the Jenkins Dashboard, click on the Manage Jenkins link.

2. On the Manage Jenkins page, scroll down and click on Manage Users.

3. On the Users page, using the menu on the left side, click on the
Create User link to create users, as shown in the following screenshot:

[140]

Chapter 3

- O X
f; Uzers [Jenkinz] *

&« C A | [localhost:8080/jenkins/securityRealm s

Jenkins Jenkins' own user database

4% Back to Dashboard
#.. Manage Jenkins

&, Create User

Users

These users can log into Jenkins. This is a sub set of this list, which also contains auto-created users who really
just made some commits on some projects and have no direct Jenkins access.

User Id Name

IEHelp us localize this page Page generated: Nov 4, 2015 11:08:39 PM Jenkins ver. 1.635

All the unsigned users who access the Jenkins master, fall
= under the Anonymous group and inherit all its privileges.

4. You will see a Sign up form to fill. Give the username as admin (or you can
choose any name for that matter), give a strong password of your choice.
Remember the password.

[141]

Configuring Jenkins

5. Fill the other details like Full name and E-mail address accordingly and click

on the Sign up button.
o x
ﬁSg' up [Jenkins] *®
« C A [localhost:8080/jenkins/security m 5

Jenkins

Jenkins Jenkins' own user database

log in | sign up

% Back to Dashboard
p Manage Jenkins Slgn u p

&, create User

Usemame: admin

Password:
Confirm password: |sess
Full name: Administrator
E-mail address

admin@admin.com|

E Help us localize this page Page generated: Mov 4, 2015 11:10:42 PM

Jenkins ver. 1.635

[142]

Chapter 3

6. A user named admin gets created, as shown in the following screenshot:

- O X
ﬁ Users [Jenkins] *®

« C f localhost:8080/jenkins/securityRealm 97 =

Jenkins Jenkins' own user database DISABLE AUTO REFRESH

4% DBack to Dashboard
7 IManage Jenkins
& create User
Users

These users can log into Jenkins. This is a sub set of this list, which also contains auto-created users who really just
made some commits on some projects and have no direct Jenkins access

User Id Name

a' admin Administrator

&
&

7. Do not log in with this user for now. At this point of time, the user admin is
just a regular user with no privileges. The real admin at this moment is the
Anonymous group.

8. From the Manage Jenkins page, go to the Configure Global Security
page. Here, we will make the newly created admin user an administrator in
real terms.

9. On the Configure Global Security page, scroll down to the Authorization
section.

10. Type admin inside the User/group to add field and click on the Add button.
11. Once added, check all the boxes for the user admin.

[143]

Configuring Jenkins

12. On the other hand, uncheck everything and keep only the read-only type
privileges for the Anonymous group, as shown in the following screenshot:

L Overall Credentials
User/group

AdministerConfigureUpdateCenterReadRunScriptsUploadPlugins CreateDeleteManageDomains UpdateView
Anonymous 7

& admin v v v % v v v s v
Slave Job
BuildConfigureConnectCreateDeleteDisconnectBuildCancelConfigureCreateDeleteDiscoverRead\Workspace
v
v v v v v v v v v v v v v
Run View SCM
DeletelUpdateConfigureCreateDeleteRead Tag
<
v v v v s

13. Click on the Save button and you will be redirected to a new page:

ﬁ;e"("S x

log in | sign up

Jenkins

Access Denied

@ anonymous is missing the Overall/Administer permission

14. This was inevitable, as we have stripped the admin privileges from
Anonymous group.

15. Nevertheless, we have also transferred the admin privileges to the admin
user that we created recently.

16. Just to be on the safer side, restart Jenkins.

[144]

Chapter 3

17. Upon restart, you will see the Jenkins Dashboard as shown in the following
screenshot. We are currently using Jenkins as an anonymous user. You can
see the build buttons have been disabled. The Manage Jenkins link is

also disabled.

18. Click on the log in link present at the top-right corner and log in as the

admin user.

£ Dashboard [Jenkins]
€« C & | [localhost:28080/jenkins

Jenkins

& Peope

= Build History

Build Queue

Mo builds in the queue.

Build Executor Status

1 Idle
2 Idle

E Help us localize this page

Al
S W Name |
. Cleaning_Temp_Directory
QJ Jenkins_Home_Directory_Backup
lcon: SML

Legend

@ login|sign up

Last Success Last Failure Last Duration
19 hr- #15 N/A 0.64 sec
6 days 17 hr-#5 NIA 10 sec

J BSS for all RSS for failures [£ RSS for just latest builds

Page generated: Nov 4 201565413 PM REST APl Jenkins ver 1635

[145]

Configuring Jenkins

19. The following is how you should see the dashboard after logged-in as admin.
All the admin privileges have been granted.

£ Dashboard [Jenkins] x

Jenkins

New Item
&} People
= Build History
#. Manage Jenkins
4. Credentials

& My views

Build Queue =

Mo builds in the queue.
Build Executor Status =

1 Idle
2 ldle

E Help us localize this page

= C & [localhost:8080/jenkins

All +
S w
9
9
lcon: SML

@ Administrator | log out

ESH

‘@add description

Name | Last Success Last Failure Last Duration
Cleaning_Temp_Directory 9 min 41 sec - #16 N/A 7.3 sec Lz)

A

Jenkins_Home_Directory _Backup 6 days 22 hr - #5

Legend [JRSSforall [RSS forfailures [) RSS for

/A 10 sec)

just latest builds

Page generated: Nov 4, 2015 11:45:41 PM REST AP|

Jenkins ver. 1.635

Creating other

users

Users can always sign up and create their account in Jenkins using the sign up
link at the top-right corner. All such users by default get all the privileges of an

anonymous group.

1. The following screenshot shows an example where I created my

own account.

[146]

Chapter 3

Sign up

Usermame: nikhil
Password: [eeeseneens
Confirm password: | [

Full name: nikhil pathania

E-mail address: |nikhilpathania@hotmail.com

You can try creating as many accounts as you want and see all those come
under the anonymous category by default.

To see the list of Jenkins users, from the Jenkins Dashboard, click on the
People link present at the top-left section.

= New ltem

& People

= Build History

 Project Relationship

4= Check File Fingerprint

7 Manage Jenkins

4. Credentials

&. Iy Views

ﬁ.’ Job Config History

[147]

Configuring Jenkins

4. All the users are listed on the People page, as shown in the
following screenshot:

& People

Includes all known “users”, including login identities which the current security realm can enumerate, as well as
people mentioned in commit messages in recorded changelogs.

User Id Name Last Commit Activity 1 On
a' nikhil nikhil pathania NFA,
a' admin Administrator MNIA

Icon: SML

5. To give permissions to our newly created user, log into Jenkins as the
admin user.

From the Manage Jenkins page, go to the Configure Global Security page.

7. On the Configure Global Security page, scroll down to the Authorization
section.

8. Inside the User/group to add field, add the username that has signed up on

the Jenkins master and click on the Add button. In my example, I added a
user nikhil that I recently created.

9. Once added, give the new user permissions to Build, Cancel, Workspace,
and Read a Jenkins jobs, as shown in the following screenshot:

. Overall Credentials

User/group

AdministerConfigureUpdateCenterReadRunScripts UploadP lugins CreateDeleteManageDomainsUpdateView
& admin i " i i i ’ i < a i
Anonymous rd
& nikhil

Slave Job Run
‘BuildConfigureConnectCreateDeleteDisconnectBuildCancelConfigureCreateDeleteDiscoverRead\Work spaceDeleteUpdate!
Ld Ld Ld Ld Ld Ld Ld Ld Ld Ld Ld Ld Ld Ld Ld Ld
Ld
Ld td td L

View SCM

ConfigureCreateDeleteRead Tag |
v v N
Ld

[148]

Chapter 3

10. Click on the Save button at the end of the page to save the settings.

11. Login as the new user and you will notice that you can only execute builds,
but you cannot change the job configuration or the Jenkins system settings.

Using the Project-based Matrix Authorization
Strategy

In the previous section, we saw the Matrix-based security authorization feature
which gave us a good amount of control over the users and permissions. However,
imagine a situation where your Jenkins master server has grown to a point, where
it contains multiple projects (software projects), hundreds of Jenkins jobs and many
users. You want the users to have permissions only on the jobs they use. In such a
case, we need the Project-based Matrix Authorization Strategy feature.

Jenkins Job A Jenkins Job D

Jenkins Job B Jenkins Job E

‘@ Jenkins Job C ; @ Jenkins Job F

Let's learn to configure the Project-based Matrix Authorization Strategy feature:

1. From the Jenkins Dashboard, click on the Manage Jenkins link.
2. On the Manage Jenkins page, click on the Configure Global Security link.

[149]

Configuring Jenkins

3. Here's what our current configuration looks like:

. Overall Credentials
User/group
AdministerConfigureUpdateCenterReadRunScripts UploadPlugins CreateDeleteManageDomains UpdateView
& admin 7 v v v v v v 7 7 @
Anonymous v
& nikhil
Slave Job Run
‘BuildConfigureConnectCreateDeleteDisconnectBuildCancelConfigureCreateDeleteDiscoverReadWorkspaceDeleteUpdate!
Cd Ld Cd Cd Cd Cd Ld Ld Ld Ld Ld Ld Ld Ld Ld Ld
v
Ld Ld L4 Ld
View SCM
ConfigureCreateDeleteRead Tag |
v v ¢ ¥
v

4. Select the Project-based Matrix Authorization Strategy option.

[150]

Chapter 3

Authorization
Anyone can do anything
Legacy mode
Logged-in users can do anything
Matrix-based security

*' Project-based Matrix Authorization Strategy

. Overall
User/group

AdministerConfigureUpdateCenterReadRunScriptsUploadPlugins
Anonymous v

Credentials Slave

CreateDeleteManageDomainsUpdateViewBuildConfigureConnectCreateDeleteDisconnect

Job Run
BuildCancelConfigureCreateDeleteDiscoverReadWorkspaceDeleteUpdate
Ll
View SCM
ConfigureCreateDeleteRead Tag
L
Add

User/group to add:

Inside the User/group to add field, add the username that has signed up
on the Jenkins master and click on the Add button. Do not forget to add the
admin user.

[151]

Configuring Jenkins

6. The output should look like the following screenshot:

. Owverall Credentials
User/group

AdministerConfigureUpdateCenterReadRunSeriptsUploadPlugins CreateDeleteManageDomains UpdateView
Anonymous 7

& admin ' rd v v v v v o < s
Slave Job
BuildConfigureConnectCreateDeleteDisconnectBuildCancelConfigureCreateDeleteDiscoverReadWorkspace
L
Ld Ld Ld Ld Ld Ld Ld Ld + Ld Ld Ld L Ld

Run View SCM
DeletellpdateConfigureCreateDeleteRead Tag
| Ld
v 7 v v e

7. Click on the Save button at the end of the page to save the configuration.

8. From the Jenkins Dashboard, right-click on any of the Jenkins jobs and
select Configure.

g- Jenkins Home Directory Backup

= Changes
h'_.r Workspace
{2) Build Now
@ Delete Project
p Configure

ﬁ: Job Config History

9. On the job's configuration page, select the newly available option Enable
project-based security, which is right at the beginning.

[152]

Chapter 3

¥ Enable project-based security

; Credentials Job Run SCM
User/group

CreateDeleteManageDomains UpdateViewBuildCancelConfigureDeleteDis coverReadWork spaceDeleteUpdate Tag
Anonymous

User/group to add: Add

10. Now, inside the User/group to add field, add the username that you want to
give access to the current job.

11. As shown in the following screenshot, I added a user nikhil who has the
permission to build the current job.

¥ Enable project-based security

., Credentials Job Run SCM
User/group

CreateDeleteManageDomainsUpdateViewBuildCancelConfigureDeleteDiscoverReadWorkspaceDeleteUpdate Tag
Anonymous

& nikhil v v v

User/group to add: |nikhil Add

12. Once done, click on the Save button at the end of the page.

Summary

In this chapter, we saw how to configure some of the basic but important stuff in
Jenkins, all with the help of some practical examples. We created a few Jenkins jobs
and also wrote some simple scripts inside it.

enkins upgrade, Jenkins backup, and Jenkins user management are some of the

kins upgrad kins backup, and Jenki g t f th
important things we discussed in this chapter. However, if you think that you can
perform these respective tasks in a better way, incorporating some more options that
you encountered in Jenkins, then the objective of this chapter has been achieved.

The idea is that any particular task simple or complex can be performed in many
ways using Jenkins. All that matters is how creative you are with the features
provided by the tool.

[153]

Continuous Integration Using
Jenkins — Part |

We will begin the current chapter with a Continuous Integration Design that covers
the following areas:

* A branching strategy
* List of tools for Continuous Integration

* The Jenkins pipeline structure

The Continuous Integration (CI) Design will serve as a blueprint that will guide the
readers in answering the how, why, and where of the Continuous Integration being
implemented. The design will cover all the necessary steps involved in implementing
an end-to-end CI pipeline. Therefore, due to the huge amount of information, the
implementation of CI has been spread across this chapter and Chapter 5, Continuous
Integration Using Jenkins — Part 1.

The CI design discussed in this chapter should be considered as a template for
implementing Continuous Integration and not a full and final model. The branching
strategy and the tools used can be modified and replaced to suit the purpose.

We will also discuss installing and configuring Git, a popular version control system.
The current chapter and the next chapter will also give the readers an idea of how
well Jenkins gels with many other tools to achieve Continuous Integration.

[155]

Continuous Integration Using Jenkins — Part

Jenkins Continuous Integration Design

I have used a new term here: Continuous Integration Design. Almost every organization
creates one before they even begin to explore the CI and DevOps tools. In the current
section, we will go through a very general Continuous Integration Design.

Continuous Integration includes not only Jenkins or any other similar CI tool for
that matter, but it also deals with how you version control your code, the branching
strategy you follow, and so on. If you are feeling that we are overlapping with
software configuration management, then you are right.

Various organizations may follow different kinds of strategies to achieve Continuous
Integration. Since, it all depends on the project requirements and type.

The branching strategy

It's always good to have a branching strategy. Branching helps you organize your
code. It is a way to isolate your working code from the code that is under development.
In our Continuous Integration Design, we will start with three types of branches:

e Master branch

* Integration branch

e Feature branch

Master branch

You can also call it the production branch. It holds the working copy of the code
that has been delivered. The code on this branch has passed all the testing stages.
No development happens on this branch.

Integration branch

The integration branch is also known as the mainline branch. This is where all
the features are integrated, built, and tested for integration issues. Again, no
development happens here. However, developers can create feature branches
out of the integration branch and work on them.

Feature branch

Lastly we have the feature branch. This is where the actual development takes place.
We can have multiple feature branches spanning out of the integration branch.

[156]

Chapter 4

The following image shows a typical branching strategy that we will use as part
of our Continuous Integration Design. We will create two feature branches
spanning out from the integration/mainline branch, which itself spans out
from the master branch.

Integration/Mainline Branch Master/Production Branch

1
Feature1 Branch Feature 2 Branch O
U

O O

* A successful commit (code check-in) on the feature branch will go through
a build and unit test phase. If the code passes these phases successfully, it is
merged to the integration branch.

* A commit on the integration branch (a merge will create a commit) will go
through a build, static code analysis, and integration testing phase. If the
code passes these phases successfully, the resultant package is uploaded to
Artifactory (binary repository).

[157]

Continuous Integration Using Jenkins — Part

The Continuous Integration pipeline
We are now at the heart of the Continuous Integration Design. We will create two
pipelines in Jenkins, which are as follows:

* DPipeline to poll the feature branch

* Pipeline to poll the integration branch
These two pipelines work in sequence and, as a whole, form the Continuous
Integration pipeline. Their purpose is to automate the process of continuously

building, testing (unit test and integration test), and integrating the code changes.
Reporting failure/success happens at every step.

Let's discuss these pipelines and their constituents in detail.

Jenkins pipeline to poll the feature branch

The Jenkins pipeline to poll the feature branch is coupled with the feature branch.
Whenever a developer commits something on the feature branch, the pipeline gets
activated. It contains two Jenkins jobs that are as follows:

Jenkins job 1

The first Jenkins Job in the pipeline performs the following tasks:
* It polls the feature branch for changes on a regular interval
e It performs a build on the modified code

e [t executes the unit tests

Jenkins job 2

The second Jenkins Job in the pipeline performs the following task:
* It merges the successfully built and tested code onto the integration branch

If this is the first time you are seeing a Jenkins job performing automated merges,
then you are not alone. The reason is such automation is mostly done across projects
that are very mature in using Continuous Integration and where almost everything
is automated and configured well.

[158]

Chapter 4

The following figure depicts the pipeline to poll the feature branch:

Jenkins Job to merge code on integration branch

Feature "X" Branch

Jenkins Pipeline

Bl cmmmm e ——m o

St
Y

Jenkins Job to poll, build and Unit test

Jenkins pipeline to poll the integration branch

This Jenkins pipeline is coupled with the integration branch. Whenever there is a
new commit on the integration branch, the pipeline gets activated. It contains two
Jenkins jobs that perform the following tasks.

Jenkins job 1

The first Jenkins job in the pipeline performs the following tasks:

* It polls the integration branch for changes at regular intervals
* Performs static code analysis on the code

* It builds and executes the integration tests

[159]

Continuous Integration Using Jenkins — Part |

Jenkins job 2

The second Jenkins job in the pipeline performs the following tasks:

* It uploads the built package to Artifactory (binary code repository)

Integration Branch

' Jenkins Pipeline

L
——— M

Jenkins Job to poll for changes, perform static code
analysis and integration testing

Jenkins Job to publish code to arifactory

* Merge operations on the integration branch creates a new commit
) on it
* Each consecutive Jenkins job runs only when its preceding Jenkins
i job is successful

* Any success/failure event is quickly circulated among the
respective teams using notifications

Toolset for Continuous Integration

The example project for which we are implementing Continuous Integration is a
Java-based web application. Therefore, we will see Jenkins working closely with
many other tools.

[160]

Chapter 4

The following table contains a list of the tools and technologies involved in
everything that we will see later in this chapter and in Chapter 5, Continuous
Integration Using Jenkins — Part 1.

Technologies Description

Java Primary programming language used for coding
Maven Build tool

JUnit Unit test and integration test tools

Apache Tomcat server | Servlet to host the end product

Eclipse IDE for Java development

Jenkins Continuous Integration tool

Git Version control system

SourceTree Git client

SonarQube Static code analysis tool

The next figure shows how Jenkins fits in as a CI server in our Continuous
Integration Design, along with the other DevOps tools.

* The developers have got Eclipse IDE and Git installed on their machines.
This Eclipse IDE is internally configured with the Git server. This enables
the developers to clone the feature branch from the Git server onto
their machines.

* The Git server is connected to the Jenkins master server using the Git plugin.
This enables Jenkins to poll the Git server for changes.

* The Apache Tomcat server, which hosts the Jenkins master, has also got
Maven and JDK installed on it. This enables Jenkins to build the code that
has been checked in on the Git server.

* Jenkins is also connected to SonarQube server and the Artifactory server
using the SonarQube plugin and the Artifactory plugin respectively.

[161]

Continuous Integration Using Jenkins — Part |

* This enables Jenkins to perform a static code analysis on the modified code.
And once the build, testing, and integration steps are successful, the resultant
package is uploaded to the Artifactory for further use.

Client with Eclipse IDE & Git

=

Client with Eclipse IDE & Git Client with Eclipse IDE & Git
=1 Q'\. [
—r—— |y
Git Server
SourceTree
GIT Plugin
SonarQube Plugin Artifactory Plugin

:
SonarQube Jenkins Master Artifactory
Maven Jdk
B Server
* Jenkins Plugin
Application

Developer's machine

Setting up a version control system

Now that we have our Continuous Integration Design ready, let's begin with the
version control system (VCS) installation. In this section, we will see how to install
and configure Git. This includes:

* Downloading and installing Git

[162]

Chapter 4

* Downloading and installing the Git client
* Creating a Git repository and uploading code onto it

* Creating branches

Installing Git

Perform the following steps to install Git:

1. We will install Git on a Windows machine. You can download the
latest Git executable from https://git-scm.com/, as shown in the
following screenshot:

@ Git x
€« C f |“:“:|https‘,“-"git—scm,com ol =

.
0 glt --distributed-even-if-your-workflow-isnt Q, sear

Git is a free and open source distributed version control system
designed to handle everything from small to very large projects with
speed and efficiency.

Git is easy to learn and has a tiny footprint with lightning fast
performance. It outclasses SCM tools like Subversion, CVS, Perforce,
and ClearCase with features like cheap local branching, convenient
staging areas, and multiple workflows.

9 Learn Git in your browser for free with Try Git.

2 About Documentation
ﬁ The advantages of Git compared m Command reference pages, Pro

to other source control systems. Git book content, videos and
other material.

Dowmnloads Community
‘ GUI clients and binary releases CjD Get involved! Bug reporting,
for all major platforms. mailing list, chat, development
and more,
T : & Windows GUIs W Tarballs
Git Pro Git by Scott Chacon and Ben Straub is available to read online for free. Dead v =
L tree versians are available on Amazen com. 5

2. Begin the installation by double-clicking on the downloaded executable file.

[163]

https://git-scm.com/

Continuous Integration Using Jenkins — Part |

3. Click on the Next button.

Git 2.6.3 Setup - x

Welcome to the Git Setup Wizard

This will install Git wersion 2.6.3 on your computer.

Itis recommended that you dose all other applications before
continuing.

Click Mext to continue, or Cancel to exit Setup.

4. Accept the terms and conditions and click on the Next button.

Git 2.6.3 Setup -

Information
Please read the following important information before continuing.

When you are ready to continue with Setup, dick Mext,

12. IN NO EVENT UNLESS REQUIRED BY APPLICAELE LAW OR
AGREED TC IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE PROGRAM TO OPERATE WITH ANY OTHER FROGRAMS), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

ENMD OF TERMS AND CONDITIONS

[164]

Chapter 4

5. Choose the installation directory C:\Program Files\Git. Click on the Next
button to proceed.

Git 2.6.3 Setup

Select Destination Location
Where should Git be installed?

Setup will install Git into the following folder.

To continue, dick Next. If you would like to select a different folder, dick Browse.

|C:‘Program Files\Git | E Browse. .. i

At least 184.6 MB of free disk space is required.

< Back Next > Cancel

6. Select all the necessary options, as shown in the following screenshot.
Click on the Next button to proceed.

Git 2.6.3 Setup
Select Components

Which components should be installed?

Select the compenents you want to install; dear the components you do not want to
install. Click Mext when you are ready to continue.

[m] Additional icons

[]1n the Quick Launch

0On the Desktop

Windows Explorer integration

Git Bash Here

Git GUI Here

Assodate .git™ configuration files with the default text editor
Assocate .sh files to be run with Bash

Current selection requires at least 184.6 MB of disk space.

[165]

Continuous Integration Using Jenkins — Part |

7. Give the start menu folder a name. You can choose to skip this by selecting
the Don't create a Start Menu Folder option.

Git 2.6.3 Setup - X

Select Start Menu Folder
Where should Setup place the program's shortouts?

J Setup will create the program's shortcuts in the following Start Menu folder.
———

To continue, dick Mext. If you would like to select a different folder, dick Browse.

|E Browse...

[JDon't create a Start Menu folder

8. The following options are self-explanatory. Since we are installing Git on a
Windows machine, the second option is preferable, as shown in the following
screenshot. Click on the Next button to proceed.

Git 2.6.3 Setup — *

Adjusting your PATH environment
How would you like to use Git from the command line?

(") Use Git from Git Bash only

This is the safest choice as your PATH will not be modified at all. You will only be
able to use the Git command line tools from Git Bash.

(®)Use Git from the Windows Command Prompt

This option is considered safe as it only adds some minimal Git wrappers to your
PATH to avoid duttering your environment with optional Unix tools. You will be
able to use Git from both Git Bash and the Windows Command Prompt.

(") Use Git and optional Unix tools from the Windows Command Prompt

Both Git and the optional Unix tools will be added to your PATH.

Warning: This will override Windows tools like "find" and "sort". Only
use this option if you understand the implications.

[166]

Chapter 4

9. Again, the options in the following screenshot are self-explanatory.
Choose the first option as we are installing Git on a Windows machine.

We would have chosen the second option if we were
<8 installing Git on a Linux or a Unix machine.

Git 2.6.3 Setup - >

Configuring the line ending conversions
How should Git treat line endings in text files?

(®)iCheckout Windows-style, commit Unic-style line endings:

Git will convert LF to CRLF when chedking out text files. When committing
text files, CRLF will be converted to LF. For cross-platform projects,
this is the recommended setting on Windows ("core.autoorlf™ is set to "true”).

(_) Checkout as-is, commit Unix-style line endings

Git will not perform any conversion when checking out text files. When
committing text files, CRLF will be converted to LF. For cross-platform projects,
this is the recommended setting on Unix {"core.autocrlf” is set to Tinput™).

(_) Checkout as-is, commit as-is

Git will not perform any conversions when checking out or committing
text files. Choosing this option is not recommended for cross-platform
projects {"core.autocrlf” is set to “false™).

[167]

Continuous Integration Using Jenkins — Part |

10. Choose as per your preference and click on the Next button to proceed.

Git 2.6.3 Setup - X

Configuring the terminal emulator to use with Git Bash
Which terminal emulator do you want to use with your Git Bash?

(®Use MinTTY (the default terminal of MSys2)

Git Bash will use MinTTY as terminal emulator, which sports a resizable window,
non-rectangular selections and a Unicode font. Windows console programs (such
as interactive Python) must be launched via “winpty” to wark in MinTTY.

() Use Windows' default console window

Git will use the default console window of Windows ("omd.exe™), which works well
with Win32 console programs such as interactive Python or node.js, but has a
very limited default scroll-bad:, needs to be configured to use a Unicode fontin
order to display non-ASCII characters correctly, and prior to Windows 10 its
window was not freely resizable and it only allowed rectangular text selections.

11. This option is experimental. Selecting the option Enable file system caching
may improve performance. Click on the Next button to proceed.

[168]

Chapter 4

Git 2.6.3 Setup - X

Configuring experimental performance tweaks
Which experimental performance tweaks would you like to enable?

[’]Enable file system caching

File system data will be read in bulk and cached in memory for certain
operations ("core, fscache” is set to "true”). This provides a significant
performance boost (experimental).

12. Click on the Finish button to complete the installation.

Git 2.6.3 Setup -

Completing the Git Setup Wizard

Setup has finished installing Git on your computer, The
application may be launched by selecting the installed icons.

Click Finish to exit Setup.

=) ReleaseNotes him

iie

[169]

Continuous Integration Using Jenkins — Part |

Installing SourceTree (a Git client)

In this chapter, we will use Atlassian SourceTree, which is a free and open source
client for Git:

1. Download SourceTree from www . sourcetreeapp.com, as shown in the
following screenshot:

— [m] X
& Free Mercurial and Git Cli- %
€« = C # B https//www.sourcetreeapp.com % =
Atlassian
A free Git & Mercurial client for Windows or Mac.
® Download SourceTree for Mac OS X 10.7+
@ ‘SourceTree - oEEN
File Edit View Repository Actions Tools Help
& ¢ 0 ®ad d Lt rras e £
Clone / New Commit Checkout Remove Add/Remove Fetch Pull Push Branch Merge Teg Terminal Settings
‘ SourceTree X|| testproject X | Sparide x| RestSharp X | fantasticgitproject X | MultiSelectTreeView X A=
4 File Status CurrentBeanch | |w) Show Remote Branches | Date Order © Jump to:
() Working Copy Gragh Deseription Date Authar Commit
4 Branches [orgimmaster) [orig/HEAD) [master] Merge pull request #259 from Dharun/patch-1 11Jan201319:18 Andrew Young <ai cc283fb
G master Update CONTRIBUTING.markdown 185ep 2012026 John Sheshan <jot 054adce
! Tags ‘ Merge pull request 4 from Pedrolamas/master 17 Sep 2012 1818 Pedro Lamas <pec 2529617
" Remotat 0 Added CONTRIBUTING markdown 17 Sep 2012 18:15 Pedro Lamas <pec cfce2?0
Merge pull request #321 from apodiaski/master 13 Sep 2012 5:56 Andrew Young <a1 eefOc86
! 2 ongn } Anct for ExecuteAsyne 75ep 2012 14:16 Alekeander Podlas 2¢e5204
Stashes 1] Versicn bump: 01.1 7 Sep 2012 639 Andrew Young <a1 196faTe
Merge pull request 13!0f'al‘.‘\Jasnr\macr!Ekf'Em{ulpﬂs',‘rtfuk 5 Sep 2012 14:16 Pete Johanson <la 4531670 L
.
_— L
There are a lot of open source clients available for Git. You
are free to choose any one of them. Nevertheless, the basic
+ Git operations are the same in all the tools. Git itself comes
with a GUI that is minimalist in every sense.
Y
At the end of the installation, the software will prompt
to install Git and Mercurial. Say no, as we have already
installed Git.
b -

[170]

www.sourcetreeapp.com

Chapter 4

2. Begin the installation by double-clicking on the downloaded executable file.

@ SourceTree Setup >

Welcome to SourceTree Setup
Wizard

The Setup Wizard will install SourceTree on your computer,
Click Next to continue or Cancel to exit the Setup Wizard.

3. Choose the installation directory C:\Program Files (x86) \Atlassian)\
SourceTree)\. Click on the Next button to proceed.

& SourceTree Setup - x
Select Installation Folder @
This is the folder where SourceTree will be installed. /
g
To install in this folder, dick "™Mext™, To install to a different folder, enter it below or dick
"Browse",
Folder:
C:\Program Files (x88)\Atassian\SourceTree)| Browse. ..

[171]

Continuous Integration Using Jenkins — Part |

4. Click on Install to begin the installation.

& SourceTree Setup »
Ready to Install
The Setup Wizard is ready to begin the SourceTree installation \ ~ J

Click Install to begin the installation. If you want to review or change any of your
installation settings, dick Back. Click Cancel to exit the wizard.

< Back E Install 3 Cancel

Creating a repository inside Git

We have now successfully installed Git and a Git client. Let's now create a repository

in Git.

Using SourceTree

Git clients like SourceTree are gaining popularity among newcomers as they are
intuitive and simple to understand. Let's create a Git repository using SourceTree:

1.

Open SourceTree and click on the Clone/New button present at the
top-left corner.

A window will pop up displaying three tabs Clone Repository, Add
Working Copy, and Create New Repository.

Select the Crete New Repository tab and fill in the blanks as follows:
° Specify Repository Type as Git.

[172]

Chapter 4

Specify Destination Path as any local directory path on your Git
server where you wish to store your version controlled files. For
example, I have created a folder called Projectdenkins inside the
E:\ drive on my Git server.

4. Asyou do that, by default, the Git repository will take the folder's name,
which in my case is ProjectJenkins.

5. Once done, click on the Create button.

- = .
:E Clone Repository i Add Working Copy a= Create New Repository

Repository Type: | Git
Destination Path: |E\Projectlenking III

Bookmarks
Bookmark this repository

Name: Projectlenkins

Folder: | [Root]

Using the Git commands

You can perform the same action from the command line:

1. Open the Git bash console using the Git-bash.exe. It is present inside the

directory C:\Program Files\Git\. A desktop shortcut also gets created
while installing Git though.

2. Once you successfully open the Git bash console give the following command:

git init --shared E:\ProjectJenkins

3. Inmy example, I have given the following command:

MINGWES:/c/Users/nikhi — O >

§ git init --s ed E:%Projectlenki]]]]
Initialized emp :hared Git repository in E:/Projectlenkins/.git/

[173]

Continuous Integration Using Jenkins — Part |

4. Coming back to the SourceTree dashboard, we can see ProjectJenkins
created with one master branch. But right now, the repository is empty.

@ SourceTree - m} b
File Edit View Repository Actions TIoals Help
) g — A
= @ & a 4 ¢ 4+ VP 49 K o
Clone / New Commit Checkout Discard Stash Add Remove Add/Remove Fetch Pull Push Branch Merge Tag Git Flow Terminal Settings
Q}Projecﬂenkins E\Prajectlenkins Projectlenkins X -
& | 9 master :
4 File Status Pending files, sorted by filestatus v = ~ &~
() Warking Copy
Branches
Tags
Remotes

[] [
File Status | Log/ History | Search & Clean | %’ master Atlassian

Uploading code to Git repository

In this chapter, we will use an example code that is a simple Maven web app project.
I have chosen a very unpretentious code as our main focus is to learn Continuous

Integration, testing, delivery, and lots more.

Using SourceTree

Let's upload code to the Git repository using SourceTree:

1. The code can be downloaded from the following GitHub repository:
https://github.com/nikhilpathania/ProjectJenkins.

[174]

https://github.com/nikhilpathania/ProjectJenkins

Chapter 4

2. Download the payslip folder from the online repository and place it inside
the Git repository's folder, as shown in the following screenshot:

I = | Projectlenkins
2]

“ Home Share View
LN Search Projectlenkins yel

« v » ThisPC » MewVolume(E:) » Projectlenkins

.
Quick access Name Date modified Type Size
aysli 04-12-2015 11:26 File folder
¢@ OneDrive paysip
[This PC
¥ Metwork
1item =

3. Open the SourceTree application and you will see the code reflected under
the Unstaged files section.

[175]

Continuous Integration Using Jenkins — Part |

4.

Add/Remove button from the menu to refresh the view.

@ SourceTree

File Edit View Repository Actions

]
8 ¢ ¢ :
Clone/ New Commit Checkout [iscard

4 Projectlenkins E'\Project/enkins
@ @43 | P master

Tools

Help
[==]
Stash

)

Add

&

Projectlenkins X

4 File Status
@ ‘Warking Copy
Branches
Tags
Remotes

Remove Add/Remove

d T+ U 4

Pull Push Branch Merge

b 4
Fetch

N

Pending files, sorted by file status

Staged files

[] Unstaged files

[] @& payslip/.classpath

[] @ paysli..\ariableComponentTest java

[T & payslip/targ...FixedComponent.class

[& payslip/target/classes/paysli...Gratuity -
[] & payslip/target...NetComponent.class

[& payslip/target.. TaxComponent.class

[@& payslip/t...VariableCompenent.class

[@& payslip/target/m2e-wip/web-resourcr =
[& payslip/target/m2e-wip/web-resourcr -
[& payslip/src/test/java/paysl...TaxComp

[] & payslip/target/m2e-wip/web-resourc: -
[] & payslip/target/maven-status/maven-¢ -
[@ payslip/target/maven-status/maven-c -

& nltarnstn;

Commit message

File Status | Leg / History | Search

If you don't see the code listed under Unstaged files, press F5 or click on the

— O X

Tag GitFlow Terminal Settings
=]
o -

@ Clean @43 | Pmaster Atlassian

[176]

Chapter 4

5. Click on the Staged files checkbox to stage Unstaged files. The entire code
will be staged, as shown in the following screenshot:

— m] x

@ SourceTree

File Edit View Repository Actions Tools Help

e % ¢ D @ d a4 v 4 ¢t P g8 B3 =

Clone/Mew Commit Checkout Discard Stash Add Remove Add/Remove Fetch Bull Push Branch Merge Tag Git Flow Terminal Settings

4P Projectlenkins &'\ Projectenking Projectlenkins X
(4943 | "I master =
o~

4 File Status Pending files, sorted by file status v+ = ~
) Warking Copy Staged files
Branches ayslip/.classpath "
¥ lip/.classpath
Tags PR [Unstage huni
Remotes) paysli...VariableComponentTest.java <2xml version="1.8" encoding="uTl
<classpath»
» payslipftarg...FixedComponent.class - <classpathentry kind="src" ol
<attributes>
1 payslip/t...GratuityComponent.class «<attribute name="opt:
«<attribute name="mav
9 i «/attributes>
(.o payslip/target..NetComponent.class </clasepathentrys
" <classpathentry excluding="*
» payslip/target.. TaxComponent.class <attributess
+ payslip/t..VariableComponent.class <.fat::i§;:é:::e feseyne
</classpathentry>
» payslip/target/m2e-..MANIFEST.MF - «<classpathentry kind="src” ol
<attributes>
nauslinfbasastimla nno neanedios . cattribute name="opt:
«<attribute name="maw:
«/attributes>
</classpathentry>
<classpathentry kind="con" pi
«attributes>
<attribute name="maw
<attribute name="org
«/attributes>
</classpathentry>
<classpathentry kind="con" pi
<attributes>
«<attribute name="ownt
</attributes>
</classpathentry>
<classpathentry kind="con" pi
<attributes>
«<attribute name="own:
</attributes>
«</classpathentry>

<classpathentry kind="con" pi
adding files to source code

File Status | Log/ History | Search 98| Pmaster Atlassian

e

6. Commit the code by clicking on the Commit button from the menu bar. A
small section opens up at the bottom-right corner.

[177]

Continuous Integration Using Jenkins — Part |

7. Add some comments and click on the Commit button.

@ SourceTree - [m] X
Eile Edit View Repository Actions Tools Help

] A @ A

e ¢ ¢ D e g & ¢ 4 TP g8 U B
Clone /MNew Commit Checkout Discard Stash Add Remove Add/Remove Fetch Pull Push Branch Merge Tag Git Flow Terminal Settings
oProjec?Jenkins E:\Project/enkins Projectlenkins X

5343 | ' master

4 File Status Pending files, sorted by file status « = ~ &~
) Working C
& Working Copy Staged files
Branches i@ payslip/.casspath
Trs (. payslip/.classpath —
nstage hun
Remotes (3 paysli..VariableComponentTestjava - <2xml version="1.e" encoding="uTl
- <classpath>
(9 payslip/targ...FixedComponent.class <classpathentry kind="src” o
<attributes>
@ payslip/t..GratuityComponent.class - cattribute name="opt:
<attribute name="maw
9 payslip/target..NetComponent.class - ’ l<fﬂ‘ft;r'llh"§95>
</classpathentry>
. - <classpathentry excluding="='
(2 payslip/target.. TaxComponent.class eotiributess
— «<attribute name="mav
[] Unstaged files «/attributes>
</classpathentry>
<classpathentry kind="src" o
<attributes>

<cattribute name="opt:
«attribute name="mav
</attributes>
</classpathentry>
<classpathentry kind="con" pi
<attributes>
<attribute name="maw
<attribute name="org
</attributes>
</classpathentry>
<classpathentry kind="con" pi

g @ Commit options... *

adding files to source code|

Push changes immediately to -

=—] [—]
@ File Status | Log / History | Search G4 | Pmaster Atlassian

Using the Git commands

To perform the same action using the command line, give the following command in
the Git bash console. Make sure the master branch is in the checked out state.

1. Use the following command to go to the Git repository:

cd e:/ProjectJenkins

[178]

Chapter 4

2. Use the following command to add the code:

Git add --all payslip

MINGW64:/e/Projectlenkins - O *

11

payslip
i11 be replaced in payslip/target/maven-status/maven-compiler-plugin/compile/default-compile/createdFil

ave its igin in ndi in r ing direc
i11 be repl in tu en-compiler-plugin/compile/default-compile/inputFiles. Ist.
i1l have its gin n n r direc

3. Now, use the following command to commit the changes to the source control:

git commit -m "adding files to source code" payslip

MINGWE:/e/Projectlenkins - m} X

5 git commit -m “adding files

[179]

Continuous Integration Using Jenkins — Part |

4. In the SourceTree dashboard, we can see the code has been added to our
master branch inside the Git repository ProjectJenkins, as shown in the
following screenshot:

@ SourceTree

Eile Edit Yiew Repository Actions Tools Help

& @ ¢ d & ¢ 4 TP g8 U B &

Clone/New Commit Checkout Discard Stash Add Remove Add/Remove Fetch Pull Push Branch Merge Tag GitFlow Terminal Settings
Projectlenkins E:\Project/enkins :
4 Project! 2 Projectlenkins X o
& | % master
File Status All Branches Show Remote Branches | Date Order Jump to:
4 Branches Graph Description Date Author Commit
%" master . adding files to source code 4 Dec201513:19 NIKHIL PATHANIA bb719ff
Tags
Remotes
Sorted by file status v | = - &~
Commit: bb715ff47918ccebc3c0ad6e%a77eladbb2adibs [bb715ff]
Parents: &) pays
Author: NIKHIL PATHANIA <NIKHIL PATHANIA=
Date: 04 December 2015 13:19:07 8 hunk
Labels: HEAD, -=, master %ll

adding files to source code

\oo payslip/.classpath

(9 payslip/src/test/java/payslip/VariableComponentTest,java
(9 payslip/target/classes/payslip/FixedComponent.class

(3 payslip/target/classes/payslip/GratuityComponent.class b

(& payslip/target/classes/payslip/MetComponent.class

- = : !
o2 = File Status Log / History | Search @ Clean | Pmaster fAtlassian

Configuring branches in Git

Now that we have added the code to our Git repository, let's create some branches as
discussed in our CI design.

We will create an integration branch out of the master branch and two feature branches
out of the integration branch. All the development will happen on the respective
feature branches, and all the integration will happen on the integration branch.

The master branch will remain neat and clean and only code that has been built and
tested thoroughly will reside on it.

[180]

Chapter 4

Using SourceTree

Let's create branches in the Git repository using SourceTree:

1. Select the master branch and click on the Branch button.

2. A small window with the two tabs New Branch and Delete Branches will
pop up.

3. Select the New Branch tab and fill the value Integration in the New
Branch field.

4. Select the Checkout New Branch option. Once done, click on the Create
Branch button.

@ SourceTree - m] X
File Edit View Repository Actions Tools Help

& ¢ ¢ D®AN A LTtV aAadRE B

Clone/New Commit Checkout Discard Stash Add Remove Add/Remove Fetch Branch Merge Tag Git Flow Terminal Settings

4P Projectlenkins £\Project/enkins Projectlenkins X
@ | FPmaster Ak

v New Branch e Delel:andns‘

Current Branch: master

New Branch: |Integration|

(®) Working copy parent

C it:

Checkout New Branch

&E[aje

5. The integration branch will be created and will be in the checkout state.

6. Now, we will create two branches out of the integration branch: feature1
and feature2.

[181]

Continuous Integration Using Jenkins — Part |

7. The integration branch is already selected and checked out. So, simply click
on the Branch button again.

8. Create a new branch named featurel following the same process as we did
while creating the integration branch.

9. Uncheck the Checkout New Branch option. We do not want to switch to our
new branch by checking it out after its creation.

@ SourceTree - m] X
File Edit View Repository Actions Tools Help

& ¢ ¢OD@AN A LTtV aAawRE B

Clone/MNew Commit Checkout Discard Stash Add Remove Add/Remove Fetch Branch Merge Tag GitFlow Terminal Settings

4P Projectlenkins £:\Projectenkins Projectlenkins X
& | ‘4" master al il]

Iy Mew Branch e Delete Branches

Current Branch: master

New Branch: |feature

(®) Working copy parent

C it:
O Spedfiedcommis | [«]
Create Branch Cancel

[Checkaut New Branch

&E>e

10. Create the feature2 branch in the same fashion by clicking on the Branch
button again.

[182]

Chapter 4

11. This time, check the Checkout New Branch option.

@ SourceTree - [m] X
Eile Edit View Repository Actions Tools Help

E ¢ 6083 H A LTV ASE BB

Clone/MNew Commit Checkout Discard Stash Add Remove Add/Remove Fetch Pu h Branch Merge Tag Git Flow Terminal Settings
oPmiedJenk'ms E:\Project/enkins Projectlenkins X .
& | GPmaster

v New Branch ° DE'E[EBIEI\E'IS‘

Current Branch: master
Mew Branch: [feature?|
@ Working copy parent

Ci it

Checkout Mew Branch

HEC)

Using the Git commands

Follow these steps to perform the same action using the command line:

1. Open Git bash console and type to following command to create the
integration branch:

cd e:/Projectdenkins

git branch integration

[183]

Continuous Integration Using Jenkins — Part

2. You will get the following output:

MINGWE:/e/Projectlenkins — O et

3. Inorder to create the feature branches, first check out the integration branch
with the following command:

git checkout integration

4. Then, use the following command to create the feature branches one by one:
git branch featurel

git branch feature2
MINGWE:/e/Projectlenkins — O *
it integration
ranch "integration’

¥ git branch Teaturel

$ git branch featurez

5. In the SourceTree dashboard, we can see all the branches we want with the
feature2 branch checked out, as shown in the following screenshot:

[184]

Chapter 4

@ SourceTree
Eile Edit View Repository Actions JTools Help

6z @ ¢

Clone / Mew Commit Checkout Discard — Stash

4 Projectlenkins [:\Project/enkins
& | Pfeature2

File Status
4 Branches
“§ featurel
 feature2
“F Integration
¥ master

Tags

Remotes

Projectlenkins X

-] *

A ¢+ 4 TV 4% U B &

Remove Add/Remove Fetch Pull Push Branch Merge Tag GitFlow Terminal Settings
=l
All Branches ~ Show Remote Branches | Date Order Jump to:
Graph Description Date Author Commit

NN reature2 [master][featuret |[55 Integration | RIS TA

Sorted by file status v = &~
Commit: bb715ff47918cc6be3clad6eda77eladbb2adabd [bb715ff]

Parents: & paysl
Author: NIKHIL PATHANIA <NIKHIL PATHANIA=

Date: 04 December 2015 13:18:07 LT
Labels: HEAD, -=, feature2, master, featurel, Integration casmll
adding files to source code ‘Claf

(-3 payslip/.classpath

<

19 payslip/src/test/java/payslip/VariableComponentTest.java <

(oo payslip/target/classes/payslip/FixedComponent.class

(3 payslip/target/classes/payslip/GratuityComponent.class :

(w3 payslip/target/classes/payslip/MNetComponent.class

File Status | Log / History | Search @ Clean | Ptesturez fAtlassian

> You can also see that all the branches are at the same level,

which means all the branches currently have the same version

of the code without any difference.

Git cheat sheet

The following table contains the list of Git commands used in the current chapter:

Branches

git branch

List all of the branches in your repository.

git branch <branchs>

Create a new branch.

git checkout <branchs

Create and check out a new branch named
<branchs>.

git merge <branchs>

Merge <branchs into the current branch.

[185]

Continuous Integration Using Jenkins — Part |

Repository

git init <directorys>

Create empty Git repository in the specified directory.

git add <directory>

Stage all changes in <directorys> for the next
commit. Replace <directory> with <file> to
change a specific file.

git status

List which files are staged, unstaged, and untracked.

git commit -m "<message>"

Commit the staged snapshot, but instead of launching
a text editor, use <message> as the commit message.

Rebase

git rebase -i <branch>

Interactively rebase the current branch onto another
branch named <branch>.

You can take a look at all the Git commands at the following link
s https://git-scm.com/docs.

Configuring Jenkins

Notification and reporting are an important part of Continuous Integration.
Therefore, we need an advanced e-mail notification plugin. We will also need
a plugin to make Jenkins interact with Git.

Along with these plugins, we will also need to install and configure Java and Maven
inside Jenkins. This will enable Jenkins to perform builds.

Installing the Git plugin

In order to integrate Git with Jenkins, we need to install the GIT plugin. The steps are

as follows:

1. From the Jenkins Dashboard, click on the Manage Jenkins link.

2. This will take you to the Manage Jenkins page. From here, click on the
Manage Plugins link and go to the Available tab.

3. TypeGIT plugin in the search box. Select GIT plugin from the list and click
on the Install without restart button.

[186]

https://git-scm.com/docs

Chapter 4

Filter: | ©4, GIT plugin

Updates Available nstalled Advanced
Install | Name Version
GIT plugin _ -
[This plugin allows use of Git as a build SCM. A recent Git runtime is required (1.7.9 2 4¢

minimum, 1.8.x recommended). Plugin is only tested on official git client. Use exotic
installations at your own risks.

Install without restart Download now and install after restart

4. The download and installation starts automatically. You can see the GIT
plugin has a lot of dependencies that get downloaded and installed.

Installing Plugins/Upgrades

Preparation

» Checking internet connectivity
» Checking update center connectivity
» Success

Credentials Plugin credentials plugin is already installed. Jenkins needs to be restarted for the update to

55H Credentials
Plugin

GIT client plugin
SCM API Plugin

Mailer Plugin

GIT plugin

ta-l.{e effect

_ ssh-credentials plugin is already installed. Jenkins needs to be restarted for the
update to take effect

g Success
Q Success

mailer plugin is already installed. Jenkins needs to be restarted for the update to take
effect

Q Success

5. Upon successful installation of the GIT plugin, go to the Configure System
link from the Manage Jenkins page.

6. Scroll

down until you see the Git section and fill the blanks as shown in the

following screenshot.

7. You can name your Git installation whatever you want. Point the Path to Git
executable to the location where you have installed Git. In our example, it's
C:\Program Files\Git\bin\git.exe.

[187]

Continuous Integration Using Jenkins — Part |

8. You can add as many Git servers as you want by clicking on the Add
Git button.

Git
Git installations
Git
Name Default Version Control System

Path to Git executable C:\Program Files\Git\bin\git.exe @)

Install automatically @

Delete Git

Add Git -

description

If you have more than one Git server to choose from,
=" provide a different name for each Git instance.

Installing and configuring JDK

First, download and install Java on your Jenkins server, which I guess you might have
already done as part of the Apache Tomcat server installation in the previous chapter.
If not, then simply download the latest Java JDK from the internet and install it.

Setting the Java environment variables
Let's configure the Java environment variable JAVA_HOME:

1. After installing Java JDK, make sure to configure JAVA_HOME using the
following command:

setx JAVA HOME " C:\Program Files\Java\jdkl.8.0 60" /M

2. To check the home directory of Java, use the following command:
echo %JAVA_ HOME%

3. You should see the following output:
C:\Program Files\Java\jdkl.8.0 60

4. Also, add the Java executable path to the system PATH variable using the
following command:

setx PATH "%PATH%\;C:\Program Files\Java\jdkl.8.0 60\bin" /M

[188]

Chapter 4

Configuring JDK inside Jenkins

You have installed Java and configured the system variables. Now, let Jenkins know
about the JDK installation:

1. From the Jenkins Dashboard, click on the Manage Jenkins link.

2. On the Manage Jenkins page, click on the Configure System link.

3. Scroll down until you see the JDK section. Give your JDK installation a name.
Also, assign the JAVA_HOME value to the JDK installation path, as shown
in the following screenshot:

JDK
JDK installations JOK

MName JDK 18

JAVA_HOME ¢.\program Files\Javaljdk1 8.0_60

Install automatically ()

Delete JDK

Add JDK

List of JOK installations on this system

You can configure as many JDK instances as you want.
e~ Provide a unique name to each JDK installation.

Installing and configuring Maven

The example code used in this chapter is written in Java. Hence, we need Maven
to build it. In this section, we will see how to install and configure Maven on the
Jenkins master server.

Installing Maven

Let's see how to install Maven on the Jenkins Master server first:

1. Download Maven from the following link: https://maven.apache.org/
download.cgi.

[189]

https://maven.apache.org/download.cgi
https://maven.apache.org/download.cgi

Continuous Integration Using Jenkins — Part |

2.

|
i)

Extract the downloaded zip file to C: \Program Files\Apache Software
Foundation\.

= | Apache Software Foundation - O X

“ Home Share View 0

<« - » ThisPC » Local Disk (C:) » Program Files » Apache Software Foundation «~ @& 2
Quick access MNarre Date modified Type Size
. apache-maven-3.3.9 10-11-2015 11:44 File folder
f@ OneDrive
[This PC

Setting the Maven environment variables

To set the Maven environment variables, perform the following steps:

1.

Set the Maven M2_HOME, M2, and MAVEN_OPTS variables using the
following commands:

setx M2 HOME "C:\Program Files\Apache Software Foundation\apache-
maven-3.3.9" /M

setx M2 "%M2 HOME%\bin" /M

setx MAVEN OPTS "-Xms256m -Xmx512m" /M

To check the variables, use the following commands:
echo %M2_ HOME%

echo %M2%

echo %MAVEN_ OPTS%

Also, add the Maven bin directory location to the system path using the
following command:

setx PATH "%PATH%;%M2%" /M

To check if Maven has been installed properly, use the following command:

mvn -version

You should see the following output:
Apache Maven 3.3.9 (bb52d8502bl32ec0a5a3f4c09453c07478323dc5;
2015-11-10T22:11:47+05:30)

Maven home: C:\Program Files\Apache Software Foundation\apache-
maven-3.3.9

Java version: 1.8.0 60, vendor: Oracle Corporation

Java home: C:\Program Files\Javal\jdkl.8.0 60\jre

[190]

Chapter 4

Default locale: en IN, platform encoding: Cpl252

OS name: "windows 10", version: "10.0", arch: "amdé64", family:
lldosll

Configuring Maven inside Jenkins

We have successfully installed Maven. Now, let us see how to connect it with Jenkins.

1. From the Jenkins Dashboard, click on the Manage Jenkins link.

2. On the Manage Jenkins page, click on the Configure System link.
3. Scroll down until you see the Maven section.
4

Assign the MAVEN_HOME field to the Maven installation directory. Name
your Maven installation by giving it a unique name.

Maven
Maven installations Maven
Name Maven 3.3.9

MAVEN_HOME C\Program Files\Apache Software Foundation\apache-maven-3.3.9

Install automatically (7]

Delete Maven

Add Maven

List of Maven installations on this system

& We can configure as many Maven instances as we want. Provide a
e unique name for each Maven instance.

Installing the e-mail extension plugin

The e-mail notification facility that comes with the Jenkins is not enough. We need
a more advanced version of e-mail notification such as the one provided by Email
Extension plugin. To do this, perform the following steps:

1. From the Jenkins Dashboard, click on the Manage Jenkins link. This will take
you to the Manage Jenkins page.
2. Click on the Manage Plugins link and go to the Available tab.

3. Type email extension plugin in the search box.

[191]

Continuous Integration Using Jenkins — Part |

4. Select Email Extension Plugin from the list and click on the Install without
restart button.

Filter: | =, email extension plugin
dates Available 1stalled Advanced
Install | Name Version
Email Extension Plugin
7 This plugin allows you to configure every asp email notifications. You can 2.40.5

customize when an email is sent, who should receive it, and what the email says

Install without restart Download now and install after restart

5. The plugin will install as shown in the following screenshot:

Installing Plugins/Upgrades

Preparation
* Checking intemet connectivity

* Checking update center connectivity

s Success
JUnit Plugin junit plugin is already installed. Jenkins needs to be restarted for the update to
take effect
Email Extension 0 Success

Plugin

D Go back to the top page
(you can start using the installed plugins right away)

&> Restart Jenkins when installation is complete and no jobs are running

The Jenkins pipeline to poll the feature
branch

In the following section, we will see how to create both the Jenkins jobs that are part
of the pipeline to poll the feature branch. This pipeline contains two Jenkins jobs.

[192]

Chapter 4

Creating a Jenkins job to poll, build, and unit

test code on the feature1 branch

The first Jenkins job from the pipeline to poll the feature branch does the following
tasks:

e It polls the feature branch for changes at regular intervals

* It performs a build on the modified code

* It executes unit tests
Let's start creating the first Jenkins job. I assume you are logged in to Jenkins as an
admin and have privileges to create and modify jobs. The steps are as follows:

1. From the Jenkins Dashboard, click on the New Item link.

2. Name your new Jenkins job Poll Build UnitTest Featurel Branch.

3. Select the type of job as Freestyle project and click on OK to proceed.

ltem name Poll_Build_UnitTest_Feature1 Branch

*' Freestyle project
This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with any
build system, and this can be even used for something other than software build.

Maven project

Build a maven project. Jenkins takes advantage of your POM files and drastically reduces the
configuration.

External Job
This type of job allows you to record the execution of a process run outside Jenkins, even on a
remote machine. This is designed so that you can use Jenkins as a dashboard of your existing
automation system. See the documentation for more details.

Multi-configuration project

Suitable for projects that need a large number of different configurations, such as testing on multiple
envirenments, platform-specific builds, etc.

Copy existing Item

Copy from

OK

4. Add a meaningful description about the job in the Description section.

[193]

Continuous Integration Using Jenkins — Part |

Polling version control system using Jenkins

This is a critical step where we connect Jenkins with the Version Control System.
This configuration enables Jenkins to poll the correct branch inside Git and
download the modified code:

1. Scroll down to the Source Code Management section and select the
Git option.

2. Fill the blanks as follows:

o

Repository URL: Specify the location of the Git repository. It can be a
GitHub repository or a repository on a Git server. In our case it's /e/
ProjectJenkins, as the Jenkins server and the Git server is on the
same machine.

Add */featurel in the Branch to build section, since we want our
Jenkins job to poll the featurel branch.

3. Leave rest of the fields at their default values.

Source Code Management

None
Ccvs
CVS Projectset

* Git

Repositories [rom _
Repository URL le/ProjectJenkins (2]
Credentials - none - v
o= Add
Name ® (2]
Refspec @
Add Repository Delete Repository
Branches to build Branch Specifier (blank for ‘any') |« v oq @
Add Branch Delete Branch
Repository browser (Auto) v @}

Additional Behaviours
Add -

[194]

Chapter 4

Scroll down to the Build Triggers section.

Select Poll SCM and type H/5 * * * *in the Schedule field. We want our
Jenkins job to poll the feature branch every 5 minutes. However, feel free to
choose the polling duration as you wish depending on your requirements.

Build Triggers

Trigger builds remotely (e.g., from scripts) @
Build after other projects are built @
Build periodically (2]
¢ Pgll SCM @
Schedule HI5 ****
@
2
Would last have run at Friday, 4 December, 2015 %:55:19 PM IST;
would next run at Friday, 4 December, 2015 10:00:19 PM IST.
Ignore post-commit hooks ®

Compiling and unit testing the code on the feature
branch

This is an important step in which we tell Jenkins to build the modified code that
was downloaded from Git. We will use Maven commands to build our Java code.

Scroll down to the Build section.

Click on the Add build step button and select Invoke top-level Maven
targets from the available options.

Build

Add build step -

I Execute Windows batch command
Execute shell
Invoke Ant
Involke top-level Maven targets

Trigger/call builds on other projects

[195]

Continuous Integration Using Jenkins — Part |

3. Configure the fields as shown in the following screenshot:

o

Set Maven Version as Maven 3.3.9. Remember this is what we
configured on the Configure System page in the Maven section.
If we had configured more than one Maven, we would have a
choice here.

Type the following line in the Goals section:
clean verify -Dtest=VariableComponentTest -DskipITs=true
javadoc:Javadoc

° Type payslip/pom.xml in the POM field. This tells Jenkins the
location of pom.xml in the downloaded code.

Build
Invoke top-level Maven targets
Maven Version Maven 3.3.9 v
Goals clean verify -Dtest=VariableComponentTest -Dskipl Ts=true javadec:javadoc L/
POM payslip/pom xml
Properties
5

JYM Options v
Use private Maven repository
Settings file Use default maven settings v
Global Settings file Use default maven global settings v

Delete

[196]

Chapter 4

4. Let's see the Maven command inside the Goals field in detail:

The clean command will clean any old built files

The -Dtest=VariableComponentTest command will execute a unit
test named VariableComponentTest.class

The -DskipITs=true command will skip the integration test, if any,
as we do not need them to execute at this point

The javadoc:javadoc command will tell Maven to generate Java
documentations

Publishing unit test results

Publishing unit test results falls under post build actions. In this section we configure
the Jenkins job to publish JUnit test results:

1. Scroll down to the Post build Actions section.

2. Click on the Add post-build action button and select Publish JUnit test
result report, as shown in the following screenshot:

Agaregate downstream test resulis
Archive the arfifacts

Build other projects

Publish JUnit test result report

Publish Javadoc

Record fingerprints of files to track usage
Git Fublisher

E-mail Notification

Trigger parameterized build on other projects

Add post-build action

[197]

Continuous Integration Using Jenkins — Part |

3. Under the Test report XMLs field, add payslip/target/surefire-
reports/*.xml. This is the location where the unit test reports will be
generated once the code has been built and unit tested.

Post-build Actions

Publish JUnit test result report (7]

Test report XMLs payslip/target/surefire-reports/* xml

Fileset includes’ setting that specifies the generated raw XML report files,
such a5 ‘myprojectitargetitest-reponts/.xml’. Basedir of the fileset iz the workspace root.

Retain long standard output/error ()

Health report amplification factor 10

1% failing tests scores as 99% health.
5% failing tests scores as 95% health

+ Jenkins will access all the * . xm1 files present in the payslip/
target/surefire-reports directory and publish the report. We
will shortly see this when we run this Jenkins job.

Publishing Javadoc
The steps to publish Javadoc are:

1. Once again, click on the Add post-build action button. This time, select
Publish Javadoc.

Agaregate downstream test results
Archive the artifacts

Build other projects

Fublish Javadoc

Record fingerprints of files to track usage
Git Publisher

E-mail Motification

Trigger parameterized build on other projects

Add post-build action

[198]

Chapter 4

2. Add the path payslip/target/site/apidocs in the Javadoc directory field,
as shown in the following screenshot:

Publish Javadoc

Javadoc directory payslipitarget/site/apidocs

Diirectory relative to the root of the workspace, such as ‘myprojectbuild/javedod

Retain Javadoc for each successful build (7]

Configuring advanced e-mail notification

Notification forms are an important part of CI. In this section, we will configure
the Jenkins job to send e-mail notifications based on few conditions. Let's see the
steps in detail:

1. Click on the Add post-build action button and select Editable Email
Notification, as shown in the following screenshot:

Aggregate downstream test results
Archive the artifacts

Build other projects

Record fingerprints of files to track usage
Git Publisher

E-mail Notification

Editable Email Notification

Trigger parameterized build on other projects

Add post-build action -

2. Configure Editable Email Notification as follows:

o

Under Project Recipient List, add the e-mail IDs separated by a
comma. You can add anyone who you think should be notified for
build and unit test success/ failure.

[199]

Continuous Integration Using Jenkins — Part |

° You can add the e-mail ID of the Jenkins administrator under Project
Reply-To List.

° Select Content Type as HTML (text/html).

3. Leave all the rest of the options at their default values.

Editable Email Notification ®
Dizable Extended Email Publisher ®
Allows the userto disable the publisher, whie maintaining the sattings
Project Recipient List developer@organisation. com, manager@organisation.com (2]
Comma-separated list of email address that should receive notifications for this project.
Project Reply-To List admini@organisation.com ®
Comma-separated list of email address that should be in the Reply-To header for this project
Content Type HTML (text/htmi) L2
Default Subject SDEFAULT_SUBJECT @
Default Content SDEFAULT_CONTENT
®
e
Attachments @
Can use wikdcards like ‘module/dist’™*/*.zip". See the @includes of Ant fileset for the exact formst. The base directory is the workspace.
Attach Build Log Attach Build Log v @
Content Token Reference .@.

Advanced Settings...

Delete

Now, click on the Advanced Settings... button.

5. By default, there is a trigger named Failure - Any that sends an e-mail
notification in the event of a failure (any kind of failure).

6. By default, the Send To option is set to Developers.

[200]

Chapter 4

Save to Workspace [®
Triggers
Failure - Any (7))
Send To
Developers (7))
Add - @
Advanced...
Remove Trigger

Add Trigger -~

7. But we don't want that; we have already defined whom to send e-mails to.
Therefore, click on the Add button and select the Recipient List option, as
shown in the following screenshot:

Triggers
Failure - Any ®

Send To
Developers

@

Add v ®
Culprits Advanced...
Recipient List Remove Trigger
Requestor

AddTrigi Suspects Causing Unit Tests to Begin Failing
Suspects Causing the Build to Begin Failing

Upstream Committers

[201]

Continuous Integration Using Jenkins — Part |

8. The result will look something like the following screenshot:

Triggers
Failure - Any @
Send To
Developers @
Recipient List @

0

Add ~

Advanced...

Remove Trigger
Add Trigger -

Delete

9. Delete Developers from the Send To section by clicking on the Delete button
adjacent to it. The result should look something like the following screenshot:

Triggers
Failure - Any (3)]

Send To
Recipient List

®

Add - @

Advanced...

Remove Trigger

Add Trigger ~

[202]

Chapter 4

10. Let's add another trigger to send an e-mail when the job is successful.

11. Click on the Add Trigger button and select the Success option, as shown in
the following screenshot:

Aborted

Always

Before Build

Failure - 1st

Failure - 2nd

Failure - Any

Failure - Still

Failure -= Unstahle (Test Failures)
Fixed

Not Built

Script - After Build
Script - Before Build

Status Changed

Success

Test Improvement

Test Regression

Unstable (Test Failures)
Unstable (Test Failures) - 1st
Unstable (Test Failures) - Still

Unstable (Test Failures)Failure -= Success

Add Trigger -

[203]

Continuous Integration Using Jenkins — Part |

12. Configure this new success trigger in a similar fashion, by removing
Developers and adding Recipient List under the Send To section.
Finally, everything should look like the following screenshot:

Triggers
Failure - Any ®
Send To
Recipient List ®
Delete
Add ~
Advanced...
Remove Trigger
Success ® '@'
Send To
Recipient List ®
Delete
Add -
Advanced...
Remove Trigger
Add Trigger
Delete

Creating a Jenkins job to merge code to the
integration branch

The second Jenkins job in the pipeline performs the task of merging the successfully
built and tested code into the integration branch:

1. Tassume you are logged in to Jenkins as an admin and have privileges to
create and modify jobs.

[204]

Chapter 4

2. From the Jenkins Dashboard, click on the New Item.
3. Name your new Jenkins job Merge Featurel_Into_Integration_Branch.
4. Select the type of job as Freestyle project and click on OK to proceed.

Item name

Merge_Feature1_Into_Integration_Branch

*' Freestyle project

5.

This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with any
build system, and this can be even used for something other than software build.

Maven project

Build a maven project. Jenkins takes advantage of your POM files and drastically reduces the
configuration.

External Job
This type of job allows you to record the execution of a process run outside Jenkins, even on a
remote machine. This is designed so that you can use Jenkins as a dashboard of your existing
automation system. See the documentation for more details.

Multi-configuration project

Suitable for projects that need a large number of different configurations, such as testing on multiple
environments, platform-specific builds, etc.

Copy existing Item

Copy from

OK

Add a meaningful description of the job in the Description section.

Using the build trigger option to connect two or
more Jenkins jobs

This is an important section wherein we will connect two or more Jenkins jobs to
form a Jenkins pipeline to achieve a particular goal:

1.

Scroll down to the Build Triggers section and select the Build after other
projects are built option.

Under the Projects to watch field, add Pol1 Build UnitTest Featurel
Branch.

[205]

Continuous Integration Using Jenkins — Part |

3. Select the Trigger only if the build is stable option.

Build Triggers

- -

Trigger builds remotely (e.g.. from scripts)

¥/ Build after other projects are built
Projects to watch Poll_Build_UnitTest_Feature1_Branch,
®' Trigger only if build is stable

Trigger even if the build is unstable

Trigger even if the build fails

Build periodically
Poll SCM

e]

_ In this way, we are telling Jenkins to initiate the current
% Jenkins job Merge Featurel Into Integration
- Branch only after the Poll Build_UnitTest_
Featurel Branch job has completed successfully.

4. Scroll down to the Build section. From the Add build step dropdown,
select Execute Windows batch command.

Add build step ~

Execute Windows batch command
Execute shell

Invoke Ant

Invoke top-level Maven targets

Trigger/call builds on other projects

5. Add the following code into the Command section:
E:
cd ProjectJdenkins
git checkout integration

git merge featurel -stat

[206]

Chapter 4

6.

8.

Build

Execute Windows batch command (7]

Command E:

See the list of available environment warables

Let's see the code in detail:

° The following line of code sets the current directory to
E:\ProjectJenkins:
E:

cd ProjectJdenkins

The following code checks out the integration branch:

git checkout integration

The following line of code merges changes on the featurel branch
into the integration branch.

git merge featurel --stat
- -stat gives a side-by-side comparison of the code merged.

Configure advanced e-mail notifications exactly the same way as
mentioned earlier.

Save the Jenkins job by clicking on the Save button.

Creating a Jenkins job to poll, build, and unit

1.

test code on the feature2 branch

Since we have the two feature branches in place, we need to create a Jenkins Job to
poll, build, and unit test code on the feature2 branch. We will do this by cloning the
already existing Jenkins job that polls the featurel branch. The steps are as follows:

From the Jenkins Dashboard, click on New Item.

2. Name your new Jenkins job Poll Build UnitTest_ Feature2_ Branch.

[207]

Continuous Integration Using Jenkins — Part |

3. Select the type of job as Copy existing Item and type Poll Build_
UnitTest Featurel Branch in the Copy from field.

4. Click on OK to proceed.

ltem name Poll_Build_UnitTest_Feature2_Branch

Freestyle project
This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with any
build system, and this can be even used for something other than software build.

Maven project
Build a maven project. Jenkins takes advantage of your POM files and drastically reduces the
configuration.

External Job

This type of job allows you to record the execution of a process run outside Jenkins, even on a
remote machine. This is designed so that you can use Jenkins as a dashboard of your existing
automation system. See the documentation for more details.

Multi-configuration project

Suitable for projects that need a large number of different configurations, such as testing on multiple
environments, platform-specific builds, etc.

* Copy existing Item

Copy from Poll_Build_UnitTest_Feature1_Branch

OK

5. Scroll down to the Source Code Management section. You will find
everything prefilled, as this is a copy of the Jenkins job Po11_Build_
UnitTest Featurel Branch.

[208]

Chapter 4

6. Change the Branch to build section from */featurel to */feature2, since
we want our Jenkins job to poll the feature2 branch.

Source Code Management

Mone
Cvs
CVS Projectset
® Git
Repositories Repository URL fe/ProjectJenkins ®
Credentials - none - v
&= Add @
Advanced...
Add Repository Delete Repository
Branches to build Branch Specifier (blank for‘any’) e . - ®
Add Branch Delete Branch
Repository browser (Auto))
Additional Behaviours Add ~

Subversion

[209]

Continuous Integration Using Jenkins — Part |

7. Scroll down to the Build section. Modify the Goals field. Replace the existing
one with clean verify -Dtest=TaxComponentTest -DskipITs=true
javadoc:javadoc.

Build
Invoke top-level Maven targets (3]
Maven Version Maven 3.3.9 v
Goals clean verify -Dtest=TaxComponentTest -Dskipl Ts=true javadoc:javadoc A
POM payslip/pom.xml @
Properties
(3]
P
JYM Options Y@
Use private Maven repository 'ij_‘:'
Settings file Use default maven settings M '@'
Global Settings file Use default maven global settings T@
Delete

8. Leave everything as it is.

9. Scroll down to the Editable Email Notification section and you can change
the Project Recipient List values if you want to.

Creating a Jenkins job to merge code to the
integration branch

Similarly, we need to create another Jenkins job that will merge the successfully built
and unit tested code on the featurel branch into the integration branch. And, we
will do this by cloning the already existing Jenkins job that merges the successfully
build and unit tested code from featurel branch into the Integration branch. The
steps are as follows:

1. From the Jenkins Dashboard, click on New Item.

[210]

Chapter 4

2. Name your new Jenkins job Merge Feature2_ Into_ Integration_Branch.
Alternatively, use any name that makes sense.

3. Select the type of job as Copy existing Item and type Merge Featurel
Into_Integration Branch in the Copy from field.

4. Click on OK to proceed.

ltem name Merge_Feature2_Into_Integration_Branch

Freestyle project
This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with any
build system, and this can be even used for something other than software build.

Maven project
Build a maven project. Jenkins takes advantage of your POM files and drastically reduces the
configuration.

External Job

This type of job allows you to record the execution of a process run outside Jenkins, even on a
remote machine. This is designed so that you can use Jenkins as a dashboard of your existing
automation system. See the documentation for more details.

Multi-configuration project

Suitable for projects that need a large number of different configurations, such as testing on multiple
environments, platform-specific builds, etc.

* Copy existing ltem

Copy from | Merge_Feature1_Into_Integration_Branch

OK

5. Scroll down to the Build Triggers section and select the Build after other
projects are built option.

[211]

Continuous Integration Using Jenkins — Part |

6. Under the Projects to watch field, replace Po11_Build UnitTest_
Featurel Branch with Poll Build UnitTest Feature2 Branch.

Build Triggers

Trigger builds remotely (e.qg., from scripts) ®
¥ Build after other projects are built 'ﬁ'
Projects to watch Poll_Build_UnitTest_Feature2 Branch,
* Trigger only if build iz stable
Trigger even if the build is unstable
Trigger even if the build fails
Build periodically (7]
Poll SCM @

7. Scroll down to the Build section. Replace the existing code with
the following:

E:
cd ProjectJenkins

Git checkout integration
Git merge feature2 --stat

Build

Execute Windows batch command (7]

Command £

cd Projectlenkins

git checkout integration
git merge feature2 --stat

See the list of available envimnmeant variables

Add build step -

[212]

Chapter 4

8. Leave everything as it is.

9. Scroll down to the Editable Email Notification section. You can change the
Project Recipient List values if you want to.

Summary

We began the chapter by discussing a Continuous Integration Design that contained
a branching strategy, some tools for CI, and a CI Pipeline structure. We also saw how
to install and configure Git along with the plugin that connects it with Jenkins.

The CI pipeline structure discussed as part of the CI design contained two pipelines:
one for polling the feature branch and another one for polling the integration branch.
Creating the pipeline to poll the feature branch was what we did in the second half
of the chapter. This involved polling the feature branch for changes, performing a
Maven build, unit testing, and publishing Javadoc. Later, we saw how to merge the
successfully built and tested code into the integration branch.

However, this was half the story. The next chapter is all about creating the Jenkins
pipeline to poll the Integration branch, wherein we will see how the successfully
merged code on the integration branch is built and tested for integration issues
and lots more.

[213]

Continuous Integration Using

Jenkins — Part ||

In this chapter, we will continue with the remaining portion of our Continuous
Integration Design. Here, we will cover the following topics:

Installing SonarQube

Installing SonarQube Scanner

Installing Artifactory (binary repository)

Installing and configuring Jenkins plugin for SonarQube and Artifactory
Creating the Jenkins pipeline to poll the integration branch

Configuring Eclipse IDE with Git

Later in this chapter, after implementing the Continuous Integration Design, we will
walk through our newly created Continuous Integration pipeline. We will do this by
assuming the role of a developer and making some changes to the feature branch.
We will then see how these changes propagate through the Jenkins CI pipeline and
how Continuous Integration happens in real time.

[215]

Continuous Integration Using Jenkins — Part I

Installing SonarQube to check code
quality

Apart from integrating code in a continuous way, CI pipelines also include

tasks that perform Continuous Inspection —inspecting code for its quality in a
continuous approach.

Continuous Inspection deals with inspecting and avoiding code that is of poor
quality. Tools such as SonarQube help us to achieve this. Every time a code gets
checked in (committed), it is analyzed. This analysis is based on some rules defined
by the code analysis tool. If the code passes the error threshold, it's allowed to move
to the next step in its life cycle. If it crosses the error threshold, it's dropped.

Some organizations prefer checking the code for its quality right when the developer
tries to check in the code. If the analysis is good, the code is allowed to be checked in,
or else the check in is canceled and the developer needs to work on the code again.

SonarQube is a code quality management tool that allows teams to manage, track,
and improve the quality of their source code. It is a web-based application that
contains rules, alerts, and thresholds, all of which can be configured. It covers the
seven types of code quality parameters: architecture and design, duplications, unit
tests, complexity, potential bugs, coding rules, and comments.

SonarQube is an open source tool that supports almost all popular programming
languages with the help of plugins. SonarQube can also be integrated with a CI tool
such as Jenkins to perform Continuous Inspection, which we will see shortly.

SonarQube 5.1.2 is not the latest version of SonarQube. Nevertheless, we

are using it in our example, as it's the only recent version of SonarQube
s that supports the build breaker plugin. We will see more about the build

breaker plugin in the coming sections.
First, let's see how to install SonarQube. We will install SonarQube 5.1.2 on Windows
10 with the following steps:

1. To do this, download SonarQube 5.1.2 from http: //www.sonarqube.org/
downloads/, as shown in the following screenshot:

[216]

http://www.sonarqube.org/downloads/
http://www.sonarqube.org/downloads/

Chapter 5

— m] *
SonarQube™ » Download X
€« =2 C [) www.sonarqube.org/down c-a.“:_‘ w =
)
sonarqube
Features Get Support Get Involved Development Roadmap Resources Blog Company
Download

System Requirements — Documentation — Installation Instructions — Uparade Instructions — License

SonarQube 5.2 - Nov. 2, 2015

Scanners no longer access the database, new features to efficiently manage issues (more precise location, "My New Issues” notification, technical debt displayed in Issues
page, new Issue Filter widget, default assignee per project), enhanced monitoring features, new administration web services, rewrite of global administration pages
Download (md5) — Documentation — Release notes

SonarQube 4.5.6 (LTS *) - Cct 16,2015

SQALE Rating and Technical Debt Ratio, improvement of Coding Rules pages (active severity filter, display of remediation functions, management of manual rules), various
other improvements and bug fixes

Download (md5) - Documentation — Screenshots — Release notes - More details

Show all versions

* LTS stands for Long Term Support. Blocker and Critical issues will be fixed or back-ported on it. There is always 2 versions supported: LTS and LATEST. See this blog post to
decide between LTS and the LATEST version.

Related Tools

SeonarQube Scanners
Choose from a wide array of tools available to scan source code
Documentation and Download

SonarQube Plugins
More than 40 open-source and commercial plugins to extend SonarQube features.

2. Once you have successfully downloaded the SonarQube 5.1.2 archive,
extract it to C: \Program Files\.I have extracted it to C:\Program Files)\
sonarqube-5.1.2.

Setting the Sonar environment variables

Perform the following steps to set the $SONAR_HOME$ environment variable:

1. Set the $SONAR_HOME% environment variable to the installation directory
which, in our example, is C: \Program Files\sonarqube-5.1.2. Use the
following command:

setx SONAR HOME "C:\Program Files\sonarqube-5.1.2" /M

2. To check the environment variable, use the following command:
echo %SONAR_HOME%

3. The output should be as follows:

C:\Program Files\sonarqube-5.1.2

[217]

Continuous Integration Using Jenkins — Part I

Running the SonarQube application

To install SonarQube, open command prompt using admin privileges. Otherwise,
this doesn't work. The steps are as follows:

1. Use the following commands to go to the directory where the scripts to
install and start SonarQube are present:

cd %SONAR_HOME%\bin\windows-x86-64

2. Toinstall SonarQube, run the InstallNTService.bat script:

InstallNTService.bat

3. To start SonarQube, run the startNTService.bat script:
StartNTService.bat

E¥ Administrator: Command Prompt - a bt

WWIrogram

[218]

Chapter 5

4. To access SonarQube, type the following link in your favorite web browser
http://localhost:9000/.

SonarQube x

&= C | [Y localhost

sonarqube Dashboards = Rules Quality Profiles Quality Gates More =
Home
Welcome to SonarQube Dashboard PROJECTS
Since you are able ta read this, it means that you have successfully started your
- ' y Y ° QG NAME - VERSION Loc TECHNICAL DEBT LAST AMNA

SonarQube server. Well done!
If you have not removed this text, it also means that you have not yet played much No data
with SonarQube. So here are a few pointers for your next step:

» Do you now want to run analysis on a project?

» Maybe start customizing dashboards? PROJECTS
» Or simply browse the complete documentation?

» If you have a question or an issue, please visit the Get Support page. No data

Embedded database should be used for evaluation purpose only
The embedded database will not scale, it will not support upgrading to newer versions of SonarQube, and there is no support for migrating your data out of it into a different database er|

SonarQube™ technology is powered by SonarSource SA

Vareinn 69 _1 GBI w2 _ Cammamity - Nacamantation - Gat Sunnart _ Dlnnine - Wah Sarvica ABI

+ Right now, there are no user accounts configured in SonarQube.
However, by default, there is an admin account with the username
admin and the password admin.

[219]

Continuous Integration Using Jenkins — Part IT

Creating a project inside SonarQube

To create the project in SonarQube, use the following steps:

1. Login as an admin by clicking on the Log in link at the top-right corner on

the Sonar Dashboard. You will see some more items in the menu bar, as

shown in the following screenshot:

SonarQube x
« c

sonarqube

[Y localhost:200C

Dashboards » Iss| Measures Rules

Welcome to SonarQube Dashboard

Since you are able to read this, it means that you have successfully started
your SonarQube server. Well done!

If you have not removed this text, it also means that you have not yet played
much with SonarQube. So here are a few pointers for your next step:

» Do you now want to run analysis on a project?

» Maybe start customizing dashboards?

» Or simply browse the complete documentation?

» If you have a question or an issue, please visit the Get Support page

MY FAVOURITES

QG NAME

No data

Quality Profiles Quality Gates

LAST ANALYSIS

Settings More~

Administrator » [NCHs

Configure widgets
PROJECTS
QG NAME = VERSION LOC

TECHNICAL DEBT LAST ANALYSIS

No data

PROJECTS

No data

SonarQube™ technology is powered by SenarSource SA
Version 5.1.2 - LGPL v3 - Community - Documentation - Get Support - Plugins - Web Service AP|

Click on the Settings link on the menu bar.

On the Settings page, click on System and select the Provisioning option,
as shown in the following screenshot:

[220]

Chapter 5

- O x

SonarQube x
&« C | [} localhost:9000/settings w =
sonarqube Dashboards = Issues Measures Rules Quality Profiles Quality Gates

Settings

Configuration> Security * System

General Settings Provisioning
Edit global settings for this Sonart Bulk Deletion
CATEGORY General D Update Center Views Duplications Email Look & Fee
Build Breaker) System Info

Plugins)
Exclusions Analysis Reports

Comma-separated list of plugin keys. Those plugins will be use

General analyses.
Java K onar.preview.includePlugins
Licenses) .

Plugins excluded for Preview and
SCM Incremental modes Default: buildstability,d ckpit,pdfreport,report, views jira buildbrea
Security Comma-separated list of plugin keys. Those plugins will not be
Technical Debt analyses.

-

localhost:0000/provisioning

4. On the Provisioning page, click on the Create link present at the right corner
to create a new project.

5. A pop-up window will appear asking for Key, Branch, and Name values.

Fill the blanks as shown in the following screenshot and click on the Create
Project button.

New Project
Key * my:projectjenkins
Branch

Mame * ProjectJenkins

Create Project Cancel

6. That's it. We have successfully created a project inside SonarQube.

[221]

Continuous Integration Using Jenkins — Part IT

Installing the build breaker plugin for Sonar

The build breaker plugin is available for SonarQube. It's exclusively a SonarQube
plugin and not a Jenkins plugin. This plugin allows the Continuous Integration
system (Jenkins) to forcefully fail a Jenkins build if a quality gate condition is not
satisfied. To install the build breaker plugin, follow these steps:

1.

Download the build breaker plugin from the following link: http://
update.sonarsource.org/plugins/buildbreaker-confluence.html.

Place the downloaded sonar-build-breaker-plugin-1.1.rar file in the
following location: C: \Program Files\sonarqube-5.1.2\extensions\

plugins.

We need to restart SonarQube service. To do so, type services.msc in

Windows Run.

From the Services window, look for a service named SonarQube. Right-click

on it and select Restart.

. The support for the build breaker plugin has been
% discontinued since SonarQube 5.2. If you intend to use
i the latest version of SonarQube, then you won't be able
to use the build breaker plugin.

o Services

File Action View Help

e FHE-d= H=E|l»wmnw

" Services (Local)

SonarQube

Stop the service
Restart the service

Description:
SonarCube

Services (Local)

S WWAN AutoCe
& Windows Drive
& Windows Upda
& Windows Searc
&} Security Center
51 WLAN AutoCol
&} WinTab Service
£ Windows Manz
EEWInHTTP Web
& Windows Defer
£ Windows Defer

Start
Stop

river Framework

Pause

Resume

Restart

All Tasks ¥
Refresh

Properties

fice

Help

5 Diagnostic Senivermss

[222]

http://update.sonarsource.org/plugins/buildbreaker-confluence.html
http://update.sonarsource.org/plugins/buildbreaker-confluence.html

Chapter 5

5. After a successful restart, go to the SonarQube dashboard and log in as
admin. Click on the Settings link from the menu options.

6. On the Settings page, you will find the Build Breaker option under
the CATEGORY sidebar as shown in the following screenshot. Do not

configure anything,.
- m} x
SonarQube x
€« C' [I localhost:9000/settings?category=build+breaker 97 =
sonarqube | Dashboards =~ Issues Measures FRules Quality Profiles Quality Gates

Settings

Configuration¥ Security * System ¥
General Settings

Edit global settings for this SonarQube instance.
CATEGORY Build Breaker

Build Breaker

Build Breaker skip on alert flag | Default ¥
Exclusions

Default: false

General If set to true breaks on alerts are disabled. By default breaks on alerts are enabled
Java Key: sonar.buildbreake
Licenses
- Forbidden configuration parameters
SCM
~ Comma-seperated list of 'key=value’ pairs that should break the build
Security

. Key: sonar.buildbreaker.forbiddenConf
Technical Debt

Save Build Breaker Settings

Creating quality gates

For the build breaker plugin to work, we need to create a quality gate. It's a rule with
some conditions. When a Jenkins job that performs a static code analysis is running,
it will execute the quality profiles and the quality gate. If the quality gate check
passes successfully, then the Jenkins job continues. If it fails, then the Jenkins job is

aborted. Nevertheless, the static code analysis still happens. To create a quality gate,
perform the following steps:

1. Click on the Quality Gates link on the menu. By default, we have a quality
gate named SonarQube way.

[223]

Continuous Integration Using Jenkins — Part IT

2. Click on the Create button to create a new quality gate.

SonarQube x

€« C | [localhost:90

sonarqube Dashboards » 5 Measures Rules Quality Profiles SOuUalifyGatesy| Settings More =
Quality Gates Create SonarQube way Rename | Copy —UnsetasDefault = Delete
CONDITIONS

SonarQube way Default

Only project measures are checked against thresholds. Sub-projects, directories and

Add Condition: v

Blocker issues value v is greater than M
Critical issues A since previous version | | is greater than v
Coverage on new code | A since previous version v is less than v
Open issues Value v is greater than v
Reopened issues Value - is greater than -
Skipped unit tests Value » | | is greater than v
Unit test errors Value v is greater than v
Unit test failures Value v is greater than v

3. In the pop-up window, add the name that you wish to give to your new
quality gate in the Name field. In our example, have used build failure.

4. Once done, click on the Create button.

Create Quality Gate

Name * build failure

Create | Cancel

5. You will see a new quality gate named build failure on the left-hand side
of the page.

6. Now, click on the build failure quality gate and you will see a few
settings on the right-hand side of the page.

7. Setthebuild failure quality gate as the default quality gate by clicking on
the Set as Default button.

8. Now, in the Add Condition field, choose a condition named Major issues
from the drop-down menu, as shown in the following screenshot:

[224]

Chapter 5

— O *
SonarQube b4
[C | [localhost:9000/q

s =

uality_gates#show/3

sonarqube Dashboards « sues Measures Rules Quality Profiles BOQUBIEPEAEESN Settings More =
Quality Gates create | build failure Rename Copy SetasDefault Delete
build failure CONDITIONS

SenarQube way Default Only project measures are checked against thresholds. Sub-projects, directories and

Add Condition: a

No Conditions |

Issues

PROJECTS lssues
Critical issues

With Major issues

Minor issues

Info issues

Mew issues

Mew Blocker issues
Mew Critical issues

9. Now let's configure our condition. If the number of Major issues is greater
than six, the build should fail; and if it is between five and six, it should be a
warning. To achieve this, set the condition parameters as shown here:

CONDITIONS
Only project measures are checked against thresholds. Sub-projects, directories and files are ignored. More
Add Condition: v

Majorissues | value B is greater than B 5 Q6 m Cance

Installing SonarQube Scanner

SonarQube Scanner, also called SonarQube Runner, is an important application
that actually performs the code analysis. SonarQube Scanner scans the code for
its quality, based on some predefined rules. It then helps the SonarQube web
application to display this analysis along with other metrics.

The following image clearly depicts how SonarQube Server, SonarQube Scanner,
and the build breaker plugin work together with Jenkins.

[225]

Continuous Integration Using Jenkins — Part IT

SonarQube Scanner is invoked through Jenkins to perform the code analysis. The
code analysis is presented on the SonarQube dashboard and also passed to the build
breaker plugin.

There are conditions defined inside the quality gates. If the analysis passes these
conditions, then the Jenkins job is signed to proceed. However, if the analysis fails
the condition, then the build breaker plugin terminates the Jenkins job.

SonarQube Server Jenkins Master

Jenkins Job to poll, build, :

SonarQube : ! periorm static code analysis &
Dashboard : : Integration test :
T E : B ol ;

, Static Code Analysis
RO y

Sonar Runner

Fail the Build if
error = threshold

Pass the bund if
‘ err0r< threshold

Elund breakey plugin
,H|st0r|ca| analysis data

Follow these steps to install SonarQube Scanner:

1. Download the SonarQube Scanner (that is, SonarQube Runner) from the link
http://docs.sonarqube.org/display/SONAR/Analyzing+with+SonarQub

e+Scanner.

2. The link keeps updating, so just look for SonarQube Scanner on Google if
you don't find it.

[226]

http://docs.sonarqube.org/display/SONAR/Analyzing+with+SonarQube+Scanner
http://docs.sonarqube.org/display/SONAR/Analyzing+with+SonarQube+Scanner

Chapter 5

-] X
X, Installing and Configuring X
« C | [1 docs.sonarqube.org/display/S onf vl =
= sonarqube Spaces ~ Browse ~ Q @~ Login

AT SonarQube Documentation / Documenta

narQub

Installing ahd'Configuring SonarQube Scanner

Created by David Racodon on Nov 02,2015

nner

/ Installing and Confi

gurin

SonarQube Documentation

Architecture and Integration

> Requirements

~ Setup and Upgrade Name SonarQube Scanner
Get Started in Two Minutes
Latest version 2.4 (28 Apr2014)
* Installing the Server
~ Installing a Scanner Requires SonarQube 4.5.1 or higher
Installing and Configuring version
SonarQube Scanner
Installing and Configuring ; Download http://irepo1.maven.org/maven2/org/codehaus/sonar/runner/sonar-runner-
SonarQube Scanner for dist/2 4/sonar-runner-dist-2 4 zip
Maven
Installing and Configuring License GNU LGPL 3
SonarQube Scanner for Ant
» Installing and Configuring Developers Julien Henry
SonarQube Scanner for
MSBuild Issue tracker http:/jira.sonarsource.com/browse/SONARUNNER
Installing and Configuring . .
SonarQube Scanner for Sources https://github_com/Sonarsource/sonar-runner
Gradle
» Installing and Configuring
SonarQube Scanner for Features
Jenkins
Installing a Plugin The SonarQube Scanner is recommended as the default launcher to analyze a project with SonarQube
» Upgrading
> Analyzing Source Code hd -

3. Extract the downloaded file to ¢: \Program Files\.Ihave extracted itto C:\
Program Files\sonar-runner-2.4.

4. That's it, SonarQube Runner is installed.

Setting the Sonar Runner environment
variables

Perform the following steps to set the $SONAR_RUNNER_HOME% environment variable:

1. Setthe $SONAR RUNNER HOME$% environment variable to the installation
directory of SonarQube Runner by giving the following command:

setx SONAR RUNNER HOME "C:\Program Files\sonar-runner-2.4" /M

2. To check the environment variable, use the following command:
echo %SONAR RUNNER_HOME%

[227]

Continuous Integration Using Jenkins — Part IT

3. You should get the following output:

C:\Program Files\sonar-runner-2.4

4. Add the $SONAR_RUNNER HOME%\bin directory to your path using the
following command:

setx PATH "%PATH%\;C:\Program Files\sonar-runner-2.4\bin" /M

Installing Artifactory

Continuous Integration results in frequent builds and packages. Hence, there is a
need for a mechanism to store all this binary code (builds, packages, third-party
plugins, and so on) in a system akin to a version control system.

Since, version control systems such as Git, TFS, and SVN store code and not binary
files, we need a binary repository tool. A binary repository tool such as Artifactory
or Nexus that is tightly integrated with Jenkins provides the following advantages:

* Tracking builds (Who triggers a build? What version of code in the VCS was
build?)
* Dependencies
* Deployment history
The following image depicts how a binary repository tool such as Artifactory works

with Jenkins to store build artifacts. In the coming sections, we will see how to
achieve this by creating a Jenkins job to upload code to Artifactory.

Binary Repository Server Build #23
: .Projel:t =
: . Jenkins Master
i oract A : N —
: V1| Trioger :
B Artifact B : g % :
B wifact 5 .
- : 1 8 SN Jenkins Job to
i"’ Artifact C 1.0.0 : . upload code to Artifactory

i‘; Arifact C 1.0.1

5 S : O i Artitactory
; .‘arhfactc 1.0.2<____ ; 3 E‘:}?F‘uhhsh code to Artifactory

[Motification
¥

[228]

Chapter 5

In this book, we will use Artifactory to store our builds. Artifactory is a tool used
to version control binaries. The binaries can be anything from built code, packages,
executables, Maven plugins, and so on. We will install Artifactory on Windows 10.
The steps are as follows:

1. Download the latest stable version of Artifactory from https://www.jfrog.
com/open-source/. Download the ZIP archive.

& Artifactory - The Open S0 X |

&= c https://www.jfrog.com/open-source/ o =

Articles Blog Contact us

Overview Artifactory ~ Bintray ~ Complete Platform Community 0

For Developers, By Developers

s released to sp bina
ted for d an re their software

only company providing a complete platform for automated software
pment to distribution

] O

JFrog Bintray JFrog Artifactory

Download Latest Version

[o | |4 RPM
A Pul Artifactory latest Docker image

on Bintray

Natch for new re

ad older ZIP versions.. -

2. Extract the downloaded file to ¢: \Program Files\.Ihave extracted itto C:\
Program Files\artifactory-oss-4.3.2.

Setting the Artifactory environment variables

Perform the following steps to set the $ARTIFACTORY HOME% environment variable:

1. Setthe $ARTIFACTORY HOME$ environment variable to the installation
directory of Artifactory with the following command:

setx ARTIFACTORY HOME "C:\Program Files\artifactory-oss-4.3.2" /M

[229]

https://www.jfrog.com/open-source/
https://www.jfrog.com/open-source/

Continuous Integration Using Jenkins — Part I

2. To check the environment variable, use the following command:
C:\WINDOWS\system32>echo %ARTIFACTORY HOME%

3. You should get the following output:

C:\Program Files\artifactory-oss-4.3.2

Running the Artifactory application

To run Artifactory, open Command Prompt using admin privileges. Otherwise,
this doesn't work.

1. Go to the location where the script to run Artifactory is present:
cd %ARTIFACTORY_ HOME%\bin

2. Execute the installService.bat script:

installService.bat

3. This will open up a new Command Prompt window that will install
Artifactory as a windows service.

B Administrater: Command Prompt - o X

4. To start Artifactory, open Command Prompt using admin privileges and use
the following command:

sc start Artifactory

[230]

Chapter 5

5. This will provide the following output:

B Administrator: Command Prompt

6. Access Artifactory using the following link: http://localhost:8081/

artifactory/.
D Artifactory %
€« C [3 localhost:8081/artifactc cbapp/#/home

JFrog Artifactory is happily serving 0 jrog news - ==
artifacts

1 Artifactory Pro.

Ar ory Version 4.3.2 (latest release is 4.3.2)
* *
L £
able Available ot Available

[231]

Continuous Integration Using Jenkins — Part IT

Right now, there is no user account configured in Artifactory.
However, by default, there is an admin account with the
username admin and the password password.

Creating a repository inside Artifactory

We will now create a repository inside Artifactory to store our package. The steps are
as follows:
1. Log in to Artifactory using the admin account.

2. On the menu on the left-hand side, click on Repositories and then select
Local. You will see a list of repositories that are present by default.

3. Click on the New button with a plus symbol, which is present on the
right-hand side of the page.

- O x
O Artifactory x
<« C' | [1 localhost:8081/artifactory/webapp/#/admin/repositories/local e =
o ijOgArtifactory (&, Welcome, Admin (Log Out) Help
Local Repositories
@ Ne
6 Repositories
Page 1 |of 1
Repository Key Type Recalcula... Replicatio...
ext-release-local Maven
ext-snapshot-local Maven
libs-release-local Maven

libs-snapshot-local

plugins-release-local

plugins-snapshot-lecal

[232]

Chapter 5

4. In the window that pops-up, select the package type as Generic.

- [m] X
O Artifactory X
(—

C [localhost:8081/artifactory/webapp/#/admin/repository/local/new

O JFrog Artifactory

Q Welcome, Admin (Log Out)

Select Package Type

* * * g *
O = =
IS A

®

Bower Debian Docker

Gems Git LFS
& * . * *
Lwé Mmaven npm a ﬁ ‘
npm NuGet PyPI
* *
¥V w B
VAGRANT
Vagrant Yum

A generic repository can be used to host and proxy any type of file.

5. Give a name in the Repository Key * field. In our example I have used
projectjenkins.

[233]

Continuous Integration Using Jenkins — Part IT

6. Leave the rest of the fields at their default values and click on the Save &

Finish button.

O Artifactory X

&« C | [} localhost:8081/artifactory/webapp/#/admin/repository/local/new

O JFrog Artifactory Q

New Local Repository

Basic Advanced

projectjenkins
General

simple-default =

Cancel

= x
L=
Welcome, Admin (Log Out) Help

Replications *

Next > Save & Finish

[234]

Chapter 5

7. Asyou can see in the following screenshot, there is a new repository named
projectjenkins.

- u] 'S
O Artifactory X
& c -j lacalhost:8081/artifac ¥e|E
o lFngArﬁfaCtDl'y Q Welcome, Admin { Log Out) Help
Local Repositories
@® New
7 Repositories
Local Page 1 of 1
Repository Key Type Recalcula... Replicatio...

ext-release-local
ext-snapshot-local Maven

libs-release-local

libs-snapshot-local Maven

e

plugins-release-local

plugins-snapshot-local Maven

I

projectjenkins Generic

Jenkins configuration

In the previous sections, we saw how to install and configure Artifactory and
SonarQube along with SonarQube Runner. For these tools to work in collaboration
with Jenkins, we need to install their respective Jenkins plugins.

Also, we will see the installation of a special plugin named delivery pipeline plugin,
which is used to give a visual touch to our Continuous Integration pipeline.

[235]

Continuous Integration Using Jenkins — Part IT

Installing the delivery pipeline plugin
To install the delivery pipeline plugin, perform the following steps:
1. On the Jenkins Dashboard, click on the Manage Jenkins link. This will take
you to the Manage Jenkins page.
Click on the Manage Plugins link and go to the Available tab.
Type delivery pipeline plugin in the search box.

Select Delivery Pipeline Plugin from the list and click on the Install without
restart button.

& Update Center [Jenkins] %

€« C i | [localhost:8080

@ Administrator | log out

Jenkins Plugin Manager

® Back to Dashboard
n e : Filter: delivery pipeline plugin
#.. Manage Jenkins

Available
Update Center
Install | MName Version
Delivery Pipeline Plugin
3 097

Install without restart L S R I DT Update information obtained: 21 h

E Help us localize this page Page generated: Dec 4, 2015 2:29:49 PM REST APl Jenkins ver. 1.635

[236]

Chapter 5

5. The download and installation of the plugin starts automatically. You can

see Delivery Pipeline Plugin has some dependencies that get downloaded
and installed.

£ Update Center [Jenking] %

€« C A [localhosta0

@ Administrator | log out

Jenkins Update center

4 Back to Dashboard

o Installing Plugins/Upgrades
7 Manage Jenkins
Manage Plugins Preparation
» Checking internet connectivity
= Checking update center connectivity
+ Success

Parameterized Trigger

pligin & Success
jQuery plugin v Success
Delivery Pipeline

Plugin & Success

':"’ Go back to the top page
“ (you can start using the installed plugins right away)

Ep» Restart Jenkins when installation is complete and no jobs are running

IE Help us localize this page Page generated: Dec 4, 2015 2:43:40 PM REST API

Jenkins ver. 1.635

[237]

Continuous Integration Using Jenkins — Part IT

Installing the SonarQube plugin

To install the SonarQube plugin, perform the following steps:

1. From the Jenkins Dashboard, click on the Manage Jenkins link. This will take
you to the Manage Jenkins page.

Click on the Manage Plugins link and go to the Available tab.

Type SonarQube plugin in the search box. Select SonarQube Plugin from
the list and click on the Install without restart button.

£ Update Center [Jenkins] X

<« C' | [localhost:8080/jenkins/pluginManager/available L

@ Administrator | log out

Jenkins Plugin Manager

% Back to Dashboard
4 ck te i Filter: SonarQube Plugin
#.. Manage Jenkins

Available

Install | Name Version
SonarQube Plugin
SonarQube 23

Install without restart Download now and install after restart . . . -

EHBIQ us localize this page Page generated: Dec 14,2015 9:31:40 P REST APl Jenkins ver. 1.635

3

[238]

Chapter 5

4. As it can be seen in the next screenshot, the plugin is installed immediately:

4 Back fo Dashboard
7 lManage Jenkins

Manage Plugins

Installing Plugins/Upgrades

Preparation
» Checking internet connectivity

+ Checking update center connectivity
« Success

SonarQube Plugin u Success

Go back to the top page
»

{you can start using the installed plugins right away)

B> Restart Jenkins when installation is complete and no jobs are running

5. Upon successful installation of the SonarQube Plugin, go to the Configure
System link on the Manage Jenkins page.

[239]

Continuous Integration Using Jenkins — Part IT

6. Scroll down until you see the SonarQube Runner section and fill in the
blanks as shown here:

o

You can name your SonarQube Runner installation using the
Name field.

° Set the SONAR_RUNNER_HOME value to the location where you
have installed SonarQube Runner. In our example, it's C: \Program
Files\sonar-runner-2.4.

SonarQube Runner
SonarQube Runner installations SonarQube Runner

Name Sonar Runner 2.4

SONAR_RUNNER_HOME C:\Program Files\sonar-runner-2.4

Install automatically ®

Add SonarQube Runner

List of SonarQube Runnerinstallations on this system

. You can add as many Sonar Runner instances as you
a want by clicking on the Add SonarQube Runner
= button. Although not necessary, if you do, provide
each SonarQube Runner installation a different name.

7. Now, scroll down until you see the SonarQube section and fill in the blanks
as shown here:

o

Name your SonarQube installation using the Name field.

[240]

Chapter 5

° Provide the Server URL field for the SonarQube. In our example, it's
http://localhost:9000.
SonarQube
Environment variables Enable injection of SonarQube server configuration as build environment variables
If checked, jobs administratars will be able to inject & SonarQubs server configuration as envienmant variables in the buid.
SonarQube installations pge Sonar
Server URL

http:/localhost: 2000

Default is http:/ilocalhost:0000
SonarQube account login

SonarQube account used to perform analysis. Mandatory when anonymous access is disabled.
SonarQube account password

SonarQube account used to perform analysis. Mandatory when anonymous access is disabled.

Disable

Check to quickly disable SonarQube on all jobs.

Advanced...

Delete SonarQube

Add SonarQube

List of SonarQube installations

8. Save the configuration by clicking on the Save button at the bottom of
the screen.

;s You can add as many SonarQube instances as you want by clicking

on the Add SonarQube button. Although not necessary, if you do,
"~ provide each SonarQube installation a different name.

[241]

Continuous Integration Using Jenkins — Part IT

Installing the Artifactory plugin

To install the Artifactory plugin, perform the following steps:

1. From the Jenkins Dashboard, click on the Manage Jenkins link. This will take
you to the Manage Jenkins page.

Click on the Manage Plugins link and go to the Available tab.

Type Artifactory Plugin in the search box. Select Artifactory Plugin from
the list and click on the Install without restart button.

{3 Update Center [Jenkins] %

L €' | [localhost:8080/jenkins/pluginManager/available e =

@ Administrator | log out

Jenkins Plugin Manager

& Back to Dashboard
A ck 1 i« Filter | ., Artifactory Plugin|

#.. Manage Jenkins
Available

Install | Name Version

Artifactory Plugin
2456

Install without restart Download now and install after restart . . .

E Help us localize this page Page generated: Dec 15, 2015 9:56:37 PM REST APl Jenkins ver. 1.635

[242]

Chapter 5

4. The download and installation of the plugin starts automatically. You can
see the Artifactory Plugin has some dependencies that get downloaded

and installed.

G Update Center [Jenkins] %

L C'| | [localhost:8080/jenkins/updateCe

@ Administrator | log out

Jenkins Update center

% Back to Dashboard . .
3 Manage Jeniins Installing Plugins/Upgrades
Preparation

« Checking intemet connectivity

Manage Flugins
« Checking update center connectivity

+ Success
MapDB API
Plugin & Success
SUb‘JE'SiU” Plug- subversion plugin is already installed. Jenkins needs to be restarted for the update to
" take effect
Artifactory
Plugin & Success

> Go back to the top page

(you can start using the installed plugins right away)

B> Restart Jenkins when installation is complete and no jobs are running

Page generated: Dec 15, 2015 10:14:42 PM REST APl Jenkins ver. 1.635

IE Help us localize this page

5. Upon successful installation of the Artifactory Plugin, go to the Configure
System link on the Manage Jenkins page.

[243]

Continuous Integration Using Jenkins — Part IT

6. Scroll down until you see the Artifactory section and fill in the blanks as
shown here:

° Provide the URL field as the default Artifactory URL configured
at the time of installation. In our example, it is http://
localhost:8081/artifactory.

In the Default Deployer Credentials field, provide the values for
Username and Password.

Artifactory
Artifactory servers [Uge the Credentials Plugin
Artifactory
URL http://localhost: 808 1/artifactory (2]

Default Deployer Credentials

Usemame admin @

Password @

Test Connection

Use Different Resolver Credentials

Delete

Advanced...

Add

List of Arfactory servers that projects will want to deploy artifacts and build info to

7. That's it. You can test the connection by clicking on the Test Connection
button. You should see your Artifactory version displayed, as shown in the
following screenshot:

[244]

Chapter 5

Artifactory

Artifactory servers Use the Credentials Plugin
Artifactory

URL http://localhost:8081/artifactory/

Default Deployer Credentials
Usemame

admin

Password ...,

Found Artifactory 4.3.2

Use Different Resolver Credentials

Add

Test Connection

Delete

Advanced...

List of Artifactory servers that projects will want to deploy artifacts and build info to

Save the configuration by clicking on the Save button at the bottom of

the screen.

The Jenkins pipeline to poll the
integration branch

This is the second pipeline of the two, both of which are part of the CI pipeline
structure discussed in the previous chapter. This pipeline contains two Jenkins jobs.
The first Jenkins job does the following tasks:

It polls the integration branch for changes at regular intervals

It executes the static code analysis
It performs a build on the modified code

It executes the integration tests

[245]

Continuous Integration Using Jenkins — Part I

Creating a Jenkins job to poll, build, perform
static code analysis, and integration tests

I assume you are logged in to Jenkins as an admin and have privileges to create and
modify jobs. From the Jenkins Dashboard, follow these steps:

1. Click on New Item.

2. Name your new Jenkins job Poll Build_StaticCodeAnalysis_
IntegrationTest Integration_ Branch.

3. Set the type of job as Freestyle project and click on OK to proceed.

£ New ltem [Jenkins] X

&« (e localhost:8080/jenkins/view/All/newJob

@ Administrator | log out

Jenkins All
New Item ltem name Poll_Build_StaticCodeAnalysis_IntegrationTest_Integration_Branch
& People ® Freestyle project
. Build History This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with any
=" - build system, and this can be even used for something other than software build.
7 Manage Jenkins Maven project
PR Build a maven project. Jenkins takes advantage of your POM files and drastically reduces the
4. Credentials configuration.
&. My Views External Job
This type of job allows you to record the execution of a process run outside Jenkins. even on a
remote machine. This is designed so that you can use Jenkins as a dashboard of your existing
Build Queue = automation system. See the documentation for more details
No builds in the queue Multi configuration project
Suitable for projects that need a large number of different configurations, such as testing on
multiple environments, platform-specific builds, etc.
Build Executor Status = -
Copy existing Iltem
1 Idle Copy from
2 Idle
0K
EHBIQ us localize this page Page generated: Dec 17, 2015 12:4T:30 AM REST APl Jenkins ver. 1.635

3

[246]

Chapter 5

Polling the version control system for changes
using Jenkins

This is a critical step in which we connect Jenkins with the version control system.
This configuration enables Jenkins to poll the correct branch inside Git and
download the modified code.

1. Scroll down to the Source Code Management section.
2. Select Git and fill in the blanks as follows:

o

Specify Repository URL as the location of the Git repository. It can
be a GitHub repository or a repository on a Git server. In our case, it's
/e/ProjectJenkins because the Jenkins server and the Git server is
on the same machine.

Add */integration in the Branch to build section, since we want
our Jenkins job to poll integration branch. Leave rest of the fields as
they are.

Source Code Management

None

Ccvs

CVS Projectset
* Git
Repositories Repository URL o projectJenkins @

Credentials
© -none - ¥ o= Add
Advanced...

Add Repository Delete Repository

Branches to build) - T)
Branch Specifier (blank for "any’) *lintegration @

Add Branch Delete Branch

Repository browser (Auto) Y@

3. Scroll down to the Build Triggers section.

[247]

Continuous Integration Using Jenkins — Part IT

4. We want our Jenkins job to poll the feature branch every 5 minutes.
Nevertheless, you are free to choose the polling duration that you wish
depending on your requirements. Therefore, select the Poll SCM checkbox
and add H/5 * * * *in the Schedule field.

Build Triggers

Trigger builds remotely (e.g., from scripts) (7]
Build after other projects are built (7]
Build pericdically (3]
Poll SCM @
Schedule H/G = *
@
P
Would last have run at Thursday, 17 December, 2015 12:50:07 AM IST;
would next run at Thursday, 17 December, 2015 12:55:07 AM IST.
Ignore post-commit hooks (7]

Creating a build step to perform static analysis

The following configuration tell Jenkins to perform a static code analysis on the
downloaded code:

1. Scroll down to the Build section and click on the Add build step button.
Select Invoke Standalone SonarQube Analysis.

Execute Windows batch command

Execute shell

Invoke Ant

Invoke Mawven 3

Involke Standalone SonarCiube Analysis

Involke top-level Maven targets

SonarQube Scanner for MSBuild - Begin Analysis
SonarCQube Scanner for MSBuild - End Analysis

Trigger/call builds on other projects

Add build step

[248]

Chapter 5

2. Leave all the fields empty except the JDK field. Choose the appropriate

version from the menu. In our example, it's JDK 1.8.

Build

Invoke Standalone SonarQube Analysis
Task to run @

JDK JDK 1.8 v @

JOK to be used for this sonar analysis

Path to project properties @

Analysis properties

@

4
Additional arguments v ®
JVM Options v ®

[249]

Continuous Integration Using Jenkins — Part IT

Creating a build step to build and integration test
code

After successfully completing the static code analysis using SonarQube, the next step
is to build the code and perform integration testing;:

1. Click on the Add build step button again. Select Invoke top-level
Maven targets.

Build

Add build step

I Execute Windows batch command
Execute shell
Invoke Ant
Invoke top-level Maven targets

Trigger/call builds on other projects

2. We will be present with the following options:

o

Set the Maven Version field as Maven 3.3.9. Remember, this is
what we configured on the Configure System page in the Maven
section. If we had configured more than one Maven, we would
have a choice here.

Add the following line to the Goals section:

clean verify -Dsurefire.skip=true javadoc:javadoc

° Type payslip/pom.xml in the POM field. This tells Jenkins the
location of the pom.xm1 file in the downloaded code.

[250]

Chapter 5

The following screenshot displays the Invoke top-level Maven targets
window and the mentioned fields:

Invoke top-level Maven targets (7]
Maven Version Maven 3.3.9 v
Goals mvn clean verify -Dsurefire skip=true javadoc:javadoc LY
POM payslip/pom.xml @
Properties

®
P
JVM Options Y@
lUse private Maven repository ©
Setings file Use default maven settings T @
Global Settings file Use default maven global settings T @
Delete

Let's see the Maven command inside the Goals field in detail:

o

clean will clean any old built files

° -Dsurefire.skip=true will execute the integration test

o

javadoc:javadoc will tell Maven to generate Java documentation

Scroll down to the Post build Actions section.

[251]

Continuous Integration Using Jenkins — Part IT

6. Click on the Add post-build action button and select Publish JUnit test
result report, as shown in the following screenshot:

Agagregate downstream test results
Archive the artifacts

Build other projects

FPublish JUnit test result report

Fublish Javadoc

Record fingerprints of files to track usage
Git Publisher

E-mail Notification

Trigger parameterized build on other projects

Add post-build action -

7. Under the Test report XMLs field, type payslip/target/surefire-
reports/*.xml.

Post-build Actions

Publish JUnit test result report @

Test report XMLs payslip/target/surefire-reports/*. xml

Fileset includes’ setting that specifies the generated raw XML report files,

such as ‘myprojecttargettest-reports/.xml’. Basedir of the fieset is the workspace root.

Retain long standard output/error '@'

Health report amplification factor 10

1% failing tests scores as 99% health. 5% failing tests scores as 95% health

Delete
This is the location where the unit test reports will get
generated once the code is built and unit tested.
% Jenkins will access all the * . xm1 files present under the
~ payslip/target/surefire-reports directory and
publish the report. We will see this when we run this
Jenkins job.

[252]

Chapter 5

8. Next, click on the Add post-build action button. This time, select Publish
Javadoc.

Aggregate downstream test results
Archive the artifacts
Build other projects

Fublish Javadoc

Record fingerprints of files to track usage
Git Publisher

E-mail Notification

Trigger parameterized build on other projects

Add post-build action -

9. Type the path payslip/target/site/apidocs under the Javadoc
directory field.

Publish Javadoc

Javadoc directory payslip/target/site/apidocs

Directory relative to the root of the workspace, such as "myproject/buildfjavadoc

Retain Javadoc for each successful build (7]

[253]

Continuous Integration Using Jenkins — Part IT

Configuring advanced e-mail notifications

Notification forms are an important part of CI. In this section, we will configure
the Jenkins job to send e-mail notifications based on few conditions. Let's see the
steps in detail:

1. Click on the Add post-build action button and select Editable Email
Notification.

Aggregate downstream test results
Archive the artifacts

Build other projects

Record fingerprints of files to track usage
Git Publisher

E-mail Motification

Editable Email Motification

Trigger parameterized build on other projects

Add post-build action -

2. Configure Editable Email Notification as shown here:

o

Under Project Recipient List, add the e-mail IDs separated by
commas. You can add anyone whom you think should be notified
for build and unit test success/ failure.

° You can add the e-mail ID of the Jenkins administrator under Project
Reply-To List.

° Set Content Type as HTML (text/html).

[254]

Chapter 5

3. Leave all the rest of the options at their default values.

Editable Email Notification (2]
Disable Extended Email Publisher @
Allows the user to disable the publisher, while maintaining the settings
Project Recipient List developer@organisation.com, manager@organisation.com ©
Comma-separated list of email address that shoukd receive nofifications far this project.
Project Reply-To List admini@organisation.com (2]
Comma-separsted list of email address that should be in the Reply-To header for this project.
Content Type HTML (text/html))
Default Subject SDEFAULT_SUBJECT ®
Default Content SDEFAULT_CONTENT
®
A
Attachments @
Can use wikicards like ‘module/dist™"/*.zip". See the @includes of Ant fileset for the exact format. The base directory is the workspace.
Attach Build Log Attach Build Log v @
Content Token Reference ®

Advanced Settings...

Delete

4. Now, click on the Advanced Settings... button.

5. By default, there is a trigger named Failure - Any that sends e-mail
notifications in the event of failure (any kind of failure).

[255]

Continuous Integration Using Jenkins — Part IT

6. By default, the Send To option is set to Developers.

Save to Workspace ©
Triggers
Failure - Any ®
Send To
Developers (2]
Add ~ @
Advanced...

Add Trigger

7. But we don't want that, we have already defined whom to send e-mails to.
Therefore, click on the Add button and select the Recipient List option,
as shown in the following screenshot:

Triggers
Failure - Any)
Send To
Developers ©
Add ~ @

Culprit Advanced...

Recipient List Remove Trigger
Requestor

Add Trigt Suspects Causing Unit Tests to Beain Failing
Suspects Causing the Build to Begin Failing

Upstream Committers

[256]

Chapter 5

8. The result will look something like this:

Triggers
Failure - Any @

Send To
o

Developers

®

Recipient List

®

Add ~
Advanced...

Remove Trigger

Add Trigger

9. Delete Developers from the Send To section by clicking on the Delete button
adjacent to it. The result should look something like this:

Triggers
Failure - Any @

Send To
Recipient List (2]

Add ~
Advanced...

Remove Trigger

Add Trigger ~

[257]

Continuous Integration Using Jenkins — Part IT

10. Let's add another trigger to send an e-mail when the job is successful.

11. Click on the Add Trigger button and select the Success option.

Aborted

Always

Befare Build

Failure - 1st

Failure - 2nd

Failure - Any

Failure - Still

Failure -= Unstable (Test Failures)
Fixed

Not Built

Script - After Build
Script - Before Build

Status Changed

Success

Test Improvemeant

Test Regression

Unstable (Test Failures)
Unstable (Test Failures) - 1st
Unstable (Test Failures) - Still

Unstable (Test Failures)Failure -= Success

Add Trigger

12. Configure this new success trigger in the similar fashion by removing
Developers and adding Recipient List under the Send To section.
Finally, everything should look like this:

[258]

Chapter 5

Triggers
Failure - Any @
Send To
Recipient List ©
Delete
Add ~
Advanced...
Remove Trigger
Success @ 'EE‘
Send To
Recipient List ©
Delete
Add ~
Advanced...

Remove Trigger

Add Trigger ~

: I

13. Save the Jenkins job by clicking on the Save button.

Creating a Jenkins job to upload code to
Artifactory

The second Jenkins job in the pipeline uploads the build package to Artifactory
(binary code repository). From the Jenkins Dashboard:

1. Click on New Item.

2. Name your new Jenkins job Upload_Package _To Artifactory.

[259]

Continuous Integration Using Jenkins — Part IT

3. Select the type of job as Freestyle project and click on OK to proceed.

£ New ltem [Jenkins] X
&« C [localhost

@ Administrator | log out

Jenkins All
New Item Item name Upload_Package _To_Artifactory
a. People ® Freestyle project
= Build History This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with any
— i build system, and this can be even used for something other than software build.
7 Manage Jenkins Maven project

. Build a maven project. Jenkins takes advantage of your POM files and drastically reduces the
’Q Credentials configuration.
& My Views External Job
This type of job allows you to record the execution of a process run outside Jenkins. even on a
remote machine. This is designed so that you can use Jenkins as a dashboard of your existing
Build Queue = automation system. See the documentation for more details

No builds in the queue Multi-configuration project

Suitable for projects that need a large number of different configurations, such as testing on
multiple environments, platform-specific builds, etc.

Build Executor Status = -
- Copy existing Item
1 Idle Copy from
2 Idle
0K
@Helg us localize this page Page generated: Dec 17, 2015 1:47:57 AM REST APl Jenkins ver. 1.635

4. Scroll down to the Build Triggers section and select the Build after other
projects are built option.

5. Under Projects to watch field, type Pol1l_Build StaticCodeAnalysis_
IntegrationTest Integration_ Branch.

6. Select the Trigger only if build is stable option.

[260]

Chapter 5

Build Triggers

Trigger builds remotely (e.qg., from scripts) ®
¥ Build after other projects are built '@?
Projects to watch Poll_Build_StaticCodeAnalysis_IntegrationTest_Integration_Branch,

* Trigger only if build is stable
Trigger even if the build is unstable
Trigger even if the build fails
Build periodically @
Foll SCM ®

In this way, we are telling Jenkins to initiate the current Jenkins
jobUpload Package To Artifactory only after the

Poll Build StaticCodeAnalysis_ IntegrationTest
Integration Branch job has completed successfully.

Configuring the Jenkins job to upload code to
Artifactory

The following configuration will tell Jenkins to look for a potential . war file under
the Jenkins job's workspace to upload it to Artifactory:

1. Scroll down further until you see the Build Environment section. Check the
Generic-Artifactory Integration option. Doing so will display a lot of options
for Artifactory. Fill them in as follows:

o

Artifactory deployment server is your Artifactory web link. In our
case, itishttp://localhost:8081/artifactory.

Next is the Target Repository field. Select projectjenkins from the
drop-down menu. You will notice that all the repositories present
inside Artifactory will be listed here.

To refresh the list, click on the Refresh Repositories button.
Add **/* .war=>${BUILD NUMBER} to the Published Artifacts field.

[261]

Continuous Integration Using Jenkins — Part IT

[e]

Build Environment
Ant/Tvy-Artifactory Integration
Create Delivery Pipeline version

¥ Generic-Artifactory Integration

Artifactory Configuration

Deployment Details

Artifactory deployment server http://localhost:8081/artifactory

Target Repository

Items refreshed successfully

Override default credentials

Published Aifacts wupe yyar=-g/BUILD_NUMBER}

Deployment properties

Resolution Details

Artifactory resolver server http:/flocalhost:8081/artifactory

Override default credentials

Resolved Artifacts (requires Artifactory Pro)

2. Let's see what the Published Artifacts field means.

o

inside the current workspace

Leave rest of the fields at their default values.

projectjenkins A

Different Value

Refresh Repositories

° ¢{BUILD NUMBER} is a Jenkins variable that stores the current

build number

*x /% war tells Jenkins to search for and pick a WAR file anywhere

[262]

Chapter 5

[e]

Finally, **/* .war=>${BUILD_NUMBER} means search and pick any
.war file present inside the workspace, and upload it to Artifactory with the
current build number as its label

3. Scroll down to the Build section and add a build step to Execute Windows
batch command.

Add build step -

Execute Windows batch command
Execute shell

Invoke Ant

Invoke top-level Maven targets

Triggericall builds on other projects

4. Add the following code into the Command section:

COPY /Y

C:\Jenkins\jobs\Poll Build StaticCodeRnalysis
IntegrationTest Integration Branch\workspace\payslip\target
\payslip-0.0.1.war $WORKSPACE%\payslip-0.0.1l.war

Build

Execute Windows batch command (2]

Command coPY /v

C:\Jenkins\jobs\Pell _Build_StaticCodefnalysis_IntegrationTest_Integration_Branch
‘workspace\payslip\target\payslip-@.8.1.war %WORKSPACER\payslip-2.0.1.war

See the list of svailable environment varsbles

This simply copies the payslip-0.0.1.war package
»+ file generated in the previous Jenkins job from its
% respective workspace to the current job's workspace.
"~ This build step happens first and then the upload to
Artifactory takes place.

[263]

Continuous Integration Using Jenkins — Part I

5. Configure advanced e-mail notifications exactly the same way as
mentioned earlier.

6. Save the Jenkins job by clicking on the Save button.

Creating a nice visual flow for the
Continuous Integration pipeline

So far, we have created around six Jenkins jobs in total, segregated across three
Jenkins pipelines:

* Pipeline to poll the Featurel branch:
°® Poll Build UnitTest Featurel Branch

° Merge Featurel Into_ Integration Branch

* Pipeline to poll the Feature2 branch:
° Poll Build UnitTest Feature2 Branch

° Merge Feature2 Into_ Integration Branch

* Pipeline to poll the integration branch:

° Poll Build StaticCodeAnalysis IntegrationTest
Integration Branch
[e]

Upload Package To Artifactory

All the three pipelines combined complete our CI Design.

. There were actually two Jenkins pipelines discussed as part
& of our CI Design. However, we have three now. This is just
o because we have two feature branches; we still have two types
of Jenkins pipeline.

[264]

Chapter 5

In this section, we will create a view inside the Jenkins Dashboard using the delivery
pipeline plugin. This view is a nice way of presenting the CI flow. The same plugin will
also be used to create a Continuous Delivery Flow (CD). The steps are as follows:

1. Go to Jenkins Dashboard and click on the plus button as highlighted in the
following screenshot:

All |+

S w Name | Last Success Last Failure Last Duration

g Cleaning_Temp_Directory 5 days 15 hr- #48 N/A 0.91 sec E)

"J Jenkins_Home_Directory_Backup 1 mo 25 days - #5 N/A 10 sec E)

ly) Merge_Feature1_Into_Integration_Branch N/A N/A N/A 3.?_)

L Merge_Feature? Into_lntegration_Branch N/A /A MIA 'F?’_)
Poll_Build_StaticCodeAnalysis_IntegrationTest_Integration_Branch NIA N/A N/A -,,?_)
Poll_Build_UnitTest_Featurel_Branch NIA NIA N/A E)
Poll_Build_UnitTest_Feature2_Branch NIA N/A N/A E)

iy Upload_Package To_Artifactory N/A N/A N/A E}_)

2. Type Continuous Integration Pipeline asthe View name and
select Delivery Pipeline View from the options, as shown in the
following screenshot:

3. Click on OK to finish.

View name . . _
' Continuous Integration Pipeline

* Delivery Pipeline View
Shows one or more delivery pipeline instances.

List View
Shows items in a simple list format. You can choose which jobs are to be displayed in which view.

My View
This view automatically displays all the jobs that the current user has an access to.

OK

[265]

Continuous Integration Using Jenkins — Part IT

4. Now, you will see a lot of options (mentioned in the following list) and
blanks to fill in. Scroll down until you see the View settings section:

o

Set the Number of pipeline instances per pipeline field as 0.

o

Set the Number of columns field as 1.
° Set the Update interval field as 1.

o

Check the Display aggregated pipeline for each pipeline option.

o

Leave rest of the options at their default values.

Name Continuous Integration Pipeline

View settings

Mumber of pipeline instances per pipeline

U v |i$|
Display aggregated pipeline for each pipeline (& (3]
Mumber of columns 1 v @
Sorting None v @
Update interval 1 (7]

5. Scroll down until you see the Pipelines section.
6. Click thrice on the Add button besides the Components option.

Pipelines
Components Add
Regular Expression Add

[266]

Chapter 5

7. Fill in the options exactly as shown in the following screenshot:

Pipelines

Components

Regular Expression

-

Name @

@ Please supply a title!

Initial Job Poll_Build_UnitTest_Feature1_Branch v @
Final Job (optional)
Poll_Build_StaticCodeAnalysis_IntegrationTest_Integration_Branch @
Name 2)
@ Please supply a title!
Initial Job Poll_Build_UnitTest_Feature2_Branch @
Final Job (optional) Merge_Feature2_Into_Integration_Branch Y@
Name @
@ Please supply a title!
Initial Job)
Poll_Build_StaticCodeAnalysis_IntegrationTest_Integration_Branch v @
Final Job (optional) Upload_Package_To_Artifactory v @
Add
Add

8. (Click on OK to save the configuration.

9. Now, come back to the Jenkins Dashboard.

[267]

Continuous Integration Using Jenkins — Part IT

10. Right-click on the Merge_Featurel_Into_Integration_Branch Jenkins job and
select Configure.

All +

w Name |
Cleaning_Temp_Directory

Jenkins_Home_Directory_Backup

) ©© -

Merge_Featured_Into_Integration_Branch
jration_Branch
._ Workspace
vsis_IntegrationTest_Integration_Branch
£ Build Now
e1_Branch
® Delete Project

- e2_Branch
.-— P Configure

Upload_Fackage_lo_Artifactory

lcon: SML

11. Look for the Delivery Pipeline configuration option and select it.

12. Set Stage Name as Feature 1 and Task Name as Merge.
¥ Delivery Pipeline configuration
Stage Name Feature 1 @

Task Mame Merge @

13. Save the configuration by clicking on the Save button at the bottom of the
page before moving on.

14. Now, come back to the Jenkins Dashboard.

15. Right-click on the Merge_Feature2_Into_Integration_Branch Jenkins job and
select Configure.

16. Look for the Delivery Pipeline configuration option and select it.

[268]

Chapter 5

17.

18.

19.
20.

21.
22.

23.

24.
25.

26.
27.

Set Stage Name as Feature 2 and Task Name as Merge.

¥ Delivery Pipeline configuration

Stage Name Feature 2 (7]

Task Name Merge ®

Save the configuration by clicking on the Save button at the bottom of the
page before moving on.

Come back to the Jenkins Dashboard.

Right-click on the Poll_Build_StaticCodeAnalysis_IntegrationTest_
Integration_Branch Jenkins job and select Configure.

Look for the Delivery Pipeline configuration option and select it.

Set Stage Name as Integration and Task Name as static Code
Analysis, Integration-Testing.

#| Delivery Pipeline configuration
Stage Name Integration (7))

Task Name Static Code Analysis, Integration-Testing @)

Save the configuration by clicking on the Save button at the bottom of the
page before moving on.

Come back to the Jenkins Dashboard.

Right-click on the Poll_Build_UnitTest_Featurel_Branch Jenkins job and
select Configure.

Look for the Delivery Pipeline configuration option and select it.
Set Stage Name as Feature 1 and Task Name as Build, Unit-Test.

¥ Delivery Pipeline configuration

Stage Name Feature 1 @

Task Name Build, Unit-Test @

[269]

Continuous Integration Using Jenkins — Part IT

28

29

30.

31.
32.

33.

34.
35.

36.
37.
38.

39.

. Save the configuration by clicking on the Save button at the bottom of the
page before moving on.

. Come back to the Jenkins Dashboard.

Right-click on the Poll_Build_UnitTest_Feature2_Branch Jenkins job and
select Configure.

Look for the Delivery Pipeline configuration option and select it.

Set Stage Name as Feature 2 and Task Name as Build, Unit-Test.

¥ Delivery Pipeline configuration

Stage Name Feature 2 (2}

Task Name Build, Unit-Test @

Save the configuration by clicking on the Save button at the bottom of the
page before moving on.

Come back to the Jenkins Dashboard.

Right-click on the Upload_Package_To_Artifactory Jenkins job and
select Configure.

Look for the Delivery Pipeline configuration option and select it.
Set Stage Name as Integration and Task Name as publish.

Save the configuration by clicking on the Save button at the bottom of the
page before moving on.

¥ Delivery Pipeline configuration

Stage Name Integration ®

Task Name Publish @

Come back to the Jenkins Dashboard and click on the Continuous
Integration Pipeline view. Tada!! Here's what you will see:

[270]

Chapter 5

Continuous Integration Pipeline +

Feature 1 N/A
Build, Unit-Test

Merge

Feature 2 N/A
Build, Unit-Test

Merge

Integration N/A

Static Code Analysis. Integration-Testing

Publish

_ The pipeline may not appear to be continuous and
% connected visually because the so-called Delivery Pipeline
= Plugin only groups the Jenkins jobs that are connected
through triggers.

Continuous Integration in action

Let's assume the role of a developer who intends to work on the Feature1 branch.
Our developer is working on a Windows 10 machine with the following software
installed on it:

* Latest version of Eclipse (Eclipse Mars)

* Apache Tomcat server 8

e Git26.3

* SourceTree

* Java JDK 1.8.0_60

* Maven3.3.9

[271]

Continuous Integration Using Jenkins — Part IT

Configuring Eclipse to connect with Git

We will first see how to connect Git with Eclipse so that the developer can work
seamlessly without jumping between Eclipse and Git.

1. Open Eclipse and select File | Import... from the menu option.

E.} Resource - Eclipse

File

[

Edit Mavigate 5Search Project

MNew

Open File...
Close
Close All
Save

Save As...
Save All

Revert

Move...
Rename...
Refresh

Convert Line Delimiters To
Print...

Switch Workspace
Restart

Import...
Export...

Properties

Run Window Help
Alt+5Shift+N >

Ctrl+W

Ctrl+Shift+W

Ctrl+5

Ctrl+Shift+5

F2

F3

Ctrl+P

Alt+Enter

1 VariableComponentTest.java [payslip...]

2 FedComponent.java [payslip/src/..]

3 VariableComponentjava [payslip/...]

4 Torncat v8.0 Server at localhost

Exit

[272]

Chapter 5

2. The Import window appears. Select the Projects from Git option under Git,
as shown in the following screenshot:

& Import O *
Select
- \‘
Import one or more projects from a Git Repository. i g 5 I

Select an import source:

type filter text

= General A
= BB
v = Git
4, Projects from Git
= Install
(= Java EE
= Maven
= Oomph
(= Plug-in Development
= Remote Systems
= Run/Debug
= Tasks
= Team
= Web

To Weh ranrirar

@' < Back Mext > Finish Cancel

3. Click on Next.

[273]

Continuous Integration Using Jenkins — Part IT

4. Select the Clone URI option.

E Import Projects from Git

Select Repository Source

Select a location of Git Repositories

type filter text

[1 Existing local repository
#| Clone URI

@ < Back Next >

Cancel

5. Click on Next.

[274]

Chapter 5

6. Now, we need to provide the link to the Git source repository. In an ideal
situation, the Git server resides on a separate machine. Therefore, we should
provide the link of the Git source repository in the URI field. However, if the
Git repository is on the same machine, we click on the Local File... button
and select the local folder containing the Git source repository.

&) Import Projects from Git O X

Source Git Repository

Enter the location of the source repository. L .
-
Location
URI: | file:///E:\Projectlenkins
Host:

Repository path: | E\Projectlenkins

Connection

Protocel: file v

Port:

Authentication

Store in Secure Store

@ < Back Ned> | [Finish Cancel

7. Click on Next.

[275]

Continuous Integration Using Jenkins — Part IT

8. Select the branch that you want to clone. Since we are performing this
example from the perspective of a developer who works on the featurel
branch, we select the feature1 branch from the branches as shown in
the next screenshot:

& Import Projects from Git O d
Branch Selection
ul i
Select branches to clone from remote repository. Remote tracking branches : ™ |
will be created to track updates for these branches in the remote repository. -

Branches of file:///E\Projectlenkins:
type filter text

¢y, featurel
[]#% feature2
[].#% integration
[J#2 master

Select All || Deselect All

l:?:' < Back Next > Cancel

9. C(lick on Next.

[276]

Chapter 5

10. Here, we get to choose the local directory path where we would wish to
keep the cloned featurel branch. I have chosen the folder ProjectJenkins,
which is inside the Eclipse workspace.

&) Import Prajects from Git O *

Local Destination

Configure the local storage location for Projectlenkins. u-

-
Destination
Directory: Ch\Usersinikhivworkspace\Projectlenking Browse
Initial branch: featurel w

[Clene submodules

Configuration

Rermote name: | origin

11. Click on Next.

[277]

Continuous Integration Using Jenkins — Part IT

12. Select the Import using the New Project wizard option.

@ Cloning from file:///EA\Projectlenkins

Select a wizard to use for importing projects

Depending on the wizard, you may select a directory to determine the wizard's '
scope

Wizard for project import

() Import existing Eclipse projects

(®) Import using the New Project wizard
() Import as general project

Working Directory - C\Users\nikhi\workspace\Projectlenkins

'f:?;' Mext = Einish Cancel

13. Click on the Finish button.

A window might appear once you click on the Finish
= button. Ignore and close it.

[278]

Chapter 5

14. From the menu options, select File | Import....

@ Resource - Eclipse

File

&

4

g

Edit Navigate Search Project Run

Mew

Open File...

Close
Close All
Save
Save As...
Save All
Rewert
Mowve...
Rename...
Refresh

Convert Line Delimiters To
Print...

Switch Workspace
Restart

Import...
Export...

Properties

1 VariableComponentTest.java [payslip...]
2 FixedComponent.java [payslip/src/...]
3 VariableComponent.java [payslip/...]

4 Tomcat v8.0 Server at localhost

Exit

Window Help
Alt+Shift+MN >

Ctrl+W

Ctrl+Shift+W

Ctrl+S

Ctrl+Shift+5

F2

F3

Ctrl+P

Alt+Enter

[279]

Continuous Integration Using Jenkins — Part IT

15. This time, select Existing Maven Projects under Maven.

& Import O *

Select \

Import Existing Maven Projects ? -1 5]

Select an import source:

type filter text

(= EJB ~
= Git
= Install
= Java EE
v (= Maven
], Check out Maven Projects from SCM
', Existing Maven Projects
I, Install er deploy an artifact to a Maven repository
-, Materialize Maven Projects from 5CM
= Oomph
(= Plug-in Development
= Remote Systems
= Run/Debug
= Tasks

L Tanmn

"/7\' < Back Mext = Finish Cancel

16. Click on Next.

17. Click on the Browse... button to navigate to the folder inside the Eclipse
workspace where we kept our cloned copy of the Git repository.

[280]

Chapter 5

18. Select the /payslip/pom.xml option and click on the Finish button.

¥} Import Maven Projects O *

Maven Projects

Select Maven projects

Boot Directory: | 3 ~ Browse...
Projects:
/payship/pomaml employee:payslip:0.0.1:war Select All
Deselect All
Select Tree
Deselect Tree

[] Add project(s) to working set

payslip

"?:' < Back Next > Cancel

Adding a runtime server to Eclipse

Our application is hosted on an Apache Tomcat server. Therefore, let's configure the

Apache Tomcat server with Eclipse so that we can quickly test the changes:

1. To do so, right-click on the project payslip and click on Properties.

2. Inside the Properties window, click on Targeted Runtimes. If the Apache

Tomcat server is already installed, then it will appear in the Targeted
Runtimes list on the right-hand side of the window, as shown in the
next screenshot.

[281]

Continuous Integration Using Jenkins — Part IT

3. Select the Apache Tomcat server instance, Apache Tomcat v8.0 in our case.

i@} Properties for payslip O *
type filter text Targeted Runtimes = - -
Resource
Builders

Deployment Assernbly
Git

Java Build Path

Java Code Style

Java Compiler

Java Editor

Javadoc Location
JavaScript

JSP Fragment

Mawven

Project Facets

Project References
Refactoring History Make Prirnary New...
Run/Debug Settings
Server

[Show all runtimes

. .. <no runtime selected>
Service Policies

Targeted Runtimes
Task Repository

Task Tags

Validation If a runtime that you want to select is not displayed or is disabled
Web Content Settings you may need to uninstall one or more of the currently installed
Web Page Editor project facets.

Web Project Settings Uninstall Facets...

WikiText

KDeclet Restore Defaults Apply

P

4. Click on the OK button to save.

[282]

Chapter 5

5. Click on the link No servers are available. Click this link to create a new
server..., as shown in the following screenshot:

18] Resource - Eclipse — O X
Eile Edit Mavigate Search Project Run Window Help
- = QG- &~ - - = -
[%\ | 75 Resource gD Team Synchrenizing
& | I3 Project Explorer &2 = B8 = 08
z I
B« "v_:jr > payslip [Projectlenkins featurel]
Deployment Descriptor: Archetyy
% Java Resources
=i, JavaScript Resources
5 Deployed Resources
Ly bin
= sre : =
LJ target | Tasks | ¢t Servers 21 | B Console]
) pom.xml = e =
L= Servers Mo servers are available. Click this link to create a new server...

<

& payslip

6. Select Tomcat v8.0 Server as the server type. Leave rest of the fields at their
default values.

[283]

Continuous Integration Using Jenkins — Part IT

7. Click on the Next button.

& New Server O X
Define a New Server
Choose the type of server to create

Show additional server adapters | Refresh

Select the server type:
|type filter text

& Tomcat w1 Server A
B Tomcat va.0 Server
B Tomcat v5.5 Server
& Tomecat v6.0 Server
& Tomcat v7.0 Server
5 Tomcat va.0 Server

W
Publishes and runs J2EE and Java EE Web projects and server configurations to a local
Tomcat server.

¥
Server's host name; | localhost |
Server name: | Tomcat vB.0 Server at localhost |
Server runtime environment: | Apache Tomcat v8.0 ~ | Add...

Configure runtime environments...

8. You will see payslip under the list of Available resources. Move it from
Available to Configured by clicking the Add button, as shown in the
following screenshot:

[284]

Chapter 5

&) New Server O >

Add and Remove
Medify the resources that are configured on the server
=l

Move resources to the right to configure them on the server

Available Configured:
% payslip
Add >
< Remove
Add All >>

<< Remowe All

® e | e coe

9. Double-click on the available servers under the Servers tab, as shown in the
following screenshot:

+=| Tasks | 4 Servers &2 I = Console| =RE=AF W< e ~ = 0

> @a Tomcat v8.0 Server at localhost [Stopped, Synchronized]

[285]

Continuous Integration Using Jenkins — Part IT

10. A long configurations page appears. Change the following values of Ports:

o

Tomcat admin port = 8006
° HTTP/1.1 = 8082
° AJP/1.3 = 8010

E Tomcat v8.0 Server at localhost &3

B Overview

General Information
Specify the host name and other commeon settings.

Server name: Tomcat wB.0 Server at localhost

Host name: localhost

Runtime Envircnment: | Apache Tomcat v8.0 ~
Configuration path: /5ervers/Tomcat v8.0 Server at local | Browse...

Open launch configuration

w Server Locations

Specify the server path (i.e. catalina.base) and deploy path. Server must be
published with no modules present to make changes.

(®) Use waorkspace metadata (does not modify Torncat installation)
(") Use Tomcat installation (takes control of Tomcat installation)
(T Use custom location (does not madify Terncat installation)

Server path: metadata\.plugins\org.eclipse.wst.server.cy | Browse...

Set deploy path to the default value (currently set)

Deploy path: | wtpwebapps Browse...

¥ Server Options
Enter settings for the server.
[] Serve modules without publishing
[J Publish medule contexts to separate XML files
Modules auto reload by default
[[] Enable security

Enable Tomcat debug logging (not supported by this Tomcat version)

» Publishing
b Timeouts

* Ports
Meodify the server ports.

Port Mame

& Tomcat admin port
& HTTP/1.1
& AIP/13

» MIME Mappings

= 0
Port Mumber
8006
8082
8010

Change the ports only if there is more than one Apache Tomcat
s

server installed on your machine.

[286]

Chapter 5

11. Start the server by clicking on the green play button. That's it. Your
development workspace is ready. The outcome of your code changes
can be quickly seen on the web browser.

Overview | Modules

| Tasks | 4% Servers 52 | & Console =i ¥ o) v = B8
Ep Tomcat v8.0 Server at localhost [Started, Synchronized]

12. Here's what the payslip page looks like. The following preview is from the
application servlet configured on the developer's machine. It is a monthly
payslip describing most of the salary components.

[1nsert title here X

« C' [localhost:8082/payslip/

b
m

PAY SLIP OCTOBER 2015
Salary Components Monthly
Basic Pay 14438.0
HRA 57750
Convevance Allowance 800.0
Medical Allowance 1250.0
LTA (Leave Travel Allowance)||1803.0
Special Allowance 154500
Total Fixed Pay 39518.0
'Variable Pay 3951.8
Gratuity 694. 1346153846154
Income Tax 3556.62
Net Salary 39219.04538461538]

[287]

Continuous Integration Using Jenkins — Part IT

Making changes to the Feature1 branch

The following figure will help you understand the overall task of the current section:

Developer machine

Git Server
. — |

Eclipse IDE Cloned Feature1 branch : Feature1 branch
— || : : ||
Check-out : :
O 10) ®

Let's test the CI pipeline by making some changes:

1. Open Eclipse and expand the payslip project. Go to src | main | java |
payslip. You will see the Java files that compute the various components of
the payslip.

2. Let's make some modifications. Open the variableComponent . java file by
double-clicking on it.

3. Go to line number 14 and change the percentage value from 10 to 9, as
shown in the following screenshot:

[288]

Chapter 5

@ Resource - payslip/src/main/java/payslip/VariableComponent.java - Ec|

lipse -] X
File Edit Source Refactor Mavigate Search Project Run Window Help
C-E@® =] #-0-Q-50 VP4 LI R R A CRCR AR
= | [Resource £ Team Synchronizing
& [Project Explorer &2 = <f(>| o ¥ = 8 | [*VarisbleComponent java 2 VariableComponentTest java = g
5|~ 'ug > payslip [Projectlenkins featurel] package payslip:
@ 23] Deployment Descriptor: Archetype Created Web Application
% Java Resources
=i, JavaScript Resources on console
(5 Deployed Resources = |
L‘—ﬁ’ bin & public class VariableComponent {
~ (G sre 7
- private double variable;
~ [y main
v [y java
~ [payslip
|4y FixedComponent,java
EE GratuityComponent java FixedComponent wvar = new FixedComponent();
|9}, NetComponent java this.variable = ((var.totalFixedComponent()) * 9)/100:
[4f) TaxComponent java }
E‘E, VariableComponent.java
[webapp // prints the variable pay
v [y test public double printVariable(){
v [ﬁ- java System.out.println(variable);
~ [y payslip return variable:
|4} FixedComponentTest java H
[dl} GratuityComponentTest.java
[HelloIT java
[df) NetComponentTest.java
TaxC tTest,j - = = A=
B TexComponentTestjava | Tasks | 41k Servers| & Console 2 -] | =% || B (& @‘ " - B
|4} VariableComponentTest.java
= target Tomcat v8.0 Server at localhost [Apache Tomeat] C:\Program Files\Java'jdk1.8.0_60\bin\javaw.exe (17-Dec-20
Eﬂ pom.xml 39219.04538461538 £
(= Servers 3851.8
694.1346153846154
3556.62
3951.8
694.1346153846154
3556.62 v
< >
Writable Smart Insert 14:61

4. Your changes directly reflect on the webpage, as we have tightly integrated
Eclipse with the Apache Tomcat server.

[289]

Continuous Integration Using Jenkins — Part IT

5. You can see the Variable Pay value changing from 3951.8 to 3556.62. That's a
1 % decrease.

- m] X
Insert title here X
&« C [localhost:8082/payslip/ 92 =
PAY SLIP OCTOBER 2015
Salary Components Monthly
Basic Pay 14438.0
HRA 5775.0
Convevance Allowance 800.0
Medical Allowance 1250.0
LTA (Leave Travel Allowance)|[1805.0
Special Allowance 15450.0
Total Fixed Pay 30518.0
Variable Pay 3556.62
Gratuity 694.1346153846154
Income Tax 3336.62
Net Salary 38813.86538461338

Similarly, we also have unit test cases written for each Java file. Let's make some
changes to the unit test case file; otherwise, the unit test will fail. The steps are
as follows:

1. Gotosrc | test | java | payslip. You can see a number of unit test
cases files.

2. Double-click on the VariableComponetTest . java file to open it.

[290]

Chapter 5

3. Go to line number 12 and change the value from 3951.8 to 3556.62.

8] Resource - payslip/src/test/java/payslip/VariableComponentTest java - Eclipse - O X
File Edit Source Refactor Mavigate Search Project Run Window Help
o = H-0-Q-®E F-P dolE 08--I
£ | 5 Resounce | 22 Teom Synchronizing
& |5 Project Explorer % | 25| o ¥ = O || VeriableComponentjava | [I] VariableComponentTestjava it | =g
B | v "\Eé > payslip [Projectlenkins featurel] 1 package payslip:
B > ‘#3 Deployment Descriptor: Archetype Created Web Application 2
» ¥ Java Resources 2% import org.junit.Test;
> = JavaScript Resources 3
5 [Deployed Resources & public class VariableComponentTest {
> (5 bin 7
- Qﬁ’ > src 8 VariableComponent messageUtil = new VariableComponent () :
w [> main
v [v java @TESF , N
© payeli public void testPrintMessage() {
v Ey pr z:)C double message =
fj FixedComponentjava assertEquals (message, messageUtil.printVariable(},0.01);
[J} GratuityCompanent.java)
[NetComponent java
[} TaxComponent.java
[dl) = VeriableComponent java
> [y webapp
[- test
v [> java
v [y = payslip
[fi) FixedComponentTest java
|4} GratuityComponentTest,java
4l HellolT java
|4} NetComponentTest,java
Tax(Cs tTest, - = =
@ Tax empenentiestiava é;Tasks‘éﬂ Sarvarsla Console &2 i % | B BE = @l mMEBE - 8
|4} > VeriableComponentTestjava
> > target Tomcat v8.0 Server at localhost [Apache Tomcat] C:\Program Files\Javaljdk1.8.0_60\bin\javaw.exe (17-Dec-20
) porn.sml 694.1346153846154 ~
5 (= Servers 3556.62
3556.62
694.13461538446154
3556.62
38823.86538461538
~
< >

[291]

Continuous Integration Using Jenkins — Part IT

Commiitting and pushing changes to the
Feature1 branch

The following figure will help us understand the overall task that we will be
performing in this this section:

| Git Server
. T n e ' m """"""""""" '

Cloned Feature1 branch Feature1 branch
Eclipse IDE [.
R T ©
¥
o
Lt

Perform the following steps to commit and push the changes made in previous section:

1. Right-click on the project payslip and go to Team | Commit....

2. In the window that opens, add some comments as shown in the next
screenshot, and check the modified code files.

[292]

Chapter 5

E.] Commit Changes

Commit Changes to Git Repository

Commit message

changed the wvariable pay percentage from 10% to 9%

Author: nikhil < nikhilpathania@hotmail.com:
Committer:? nikhil <nikhilpathania@hotmail.com>

Files (2/13)
type filter text

Status Path

ooOoooorEaA

Open Git Staging view

Click on the Commit and Push button.

[J1 payslip/src/mainfjava/payslip/VariableComponent java
[J1 payslip/src/test/java/payslip/VariableCornponentTest java
¥: payslip/.classpath

|53 payslip/.gitignore

¥ payslip/.project

¥ payslip/.settings/ jsdtscope
payslip/.settings/org.eclipsejdt.core.prefs
payslip/.settings/org.eclipsejst.j2ee.gjb.annotations.xdoclet.prefs

| Commit and Push | |

ped

Cancel

You can see the code is committed on the cloned featurel branch and we

are pushed to the remote featurel branch.

[293]

Continuous Integration Using Jenkins — Part IT

5. Click on the OK button to proceed.

E.] Push Results: Projectlenkins - origin >

Pushed to ProjectJenkins - origin

~ o featurel — featurel [57e745b..55c96a7] (1)
~ AZ| 57e745be: changed the variable pay percentage from 10% to 9% (nikhil on 23 Dec, 2015 4:41 PM)
[J] payslip/sre/test/java/payslip/VariableCormponentTest java
[J] payslip/src/main/java/payslip/VariableComponent java

H

Message Details
Repository file:///E:\ProjectJenkins

6. Similarly, if you open source tree client for Git, you can see that local
featurel (cloned) and the original featurel are at the same level after
the push operation.

Project/enkins X

4 File Status All Branches show Remote Branches | Date Order >
{w) Working Copy Graph Description
- Br:anches Uncommitted changes
9 featuret [’%’ featurel | [? origin/featurel | changed the variable pay percentage from 10% to 9%

Tags k4 originfmasterl‘-f’ origin/fintegration l? LU LN adding code to repository

4 Remotes

4 = origin
4 feature
4 feature2
4 integration
"4 master

[294]

Chapter 5

Real-time Jenkins pipeline to poll the
Feature1 branch

Some changes were made on the Featurel branch. Let's see if Jenkins has detected it:

1. Go to the Jenkins Dashboard and click on the Continuous Integration
Pipeline view.

2. If you are fast enough, you can see it in action. If you are late, here's what
you will see. The Jenkins job to build and unit test code on the feature
branch is successful, and the Jenkins job to merge the committed code
to the integration branch is also successful.

Continuous Integration Pipeline +

Feature 1 #2
IBuiId_ Unit-Test
3 few s=conds 10

(-1

I'-.'1E'.'I’QE
a few seconds ago 0 sec

3. Come back to the source tree client for Git. You can see that the featurel
branch and the integration branch are at the same level now after the merge.

Projectlenkins X

4 File Status All Branches ~ Show Remote Branches | Date Order ~

() Working CORY | Graph Description

4 Branches F'Z&' integration l*g' i1l changed the variable pay percentage from 10% to 9%

¥ featurel “ master [feature2 | adding code to repository
i feature2
" integration
& master
Tags

Remotes

[295]

Continuous Integration Using Jenkins — Part IT

The Jenkins job to poll, build, and unit test code on

the Feature1 branch

The following figure will help us understand the overall task performed by the
current Jenkins job:

Git Server Jenkins Master

i Remote Feature1 branch

-
©

‘e Jenkins jubr lo poll, build
o L unittest code

Push po”:j"‘g
— :) ..-_:,_"'

Poll

Maven with JUnit
dependency

Build & Unitiest

Publish Test results
& Javadoc

Mofification

‘éﬂ——%ﬂ— .i

Trigger another Jenkins Job

-~

Jenkins Job to merge code
to Integration branch

D

[296]

Chapter 5

Now, let's see the Jenkins job to build and unit test code on the Featurel branch
in detail:

1. On the Jenkins Dashboard, click on the Poll_Build_UnitTest_Featurel_
Branch Jenkins job.

2. You can see a link to access Javadoc and the test results, as shown in the
following screenshot:

ﬁPolI_BL|i|d_Unit_est_:eat.. x
€« C [localhost:8

ture1_Branchy s

@ Administrator | log out

Jenkins Poll_Build_UnitTest_Feature1_Branch

Back to Dashboard

status Project Poll_Build_UnitTest
— Feature1_Branch
= Changes _— —_—
Ly Workspace [i%add description

(Y Delete Project P
B IOI Javadoc

.. Configure ! 1

@ Javadoc

[7] sit Polling Log

p-—14

[.ln WAl Ar

I J Workspace
LOO00000

—z>" Recent Changes
[SS==—]

D‘ Latest Test Result (no failures)

Downstream Projects

Build History trend =

| RSS for all £§ RSS for failures

& Merge Featurel_Into_Integration_Branch

[297]

Continuous Integration Using Jenkins — Part IT

3. This is what the Javadoc looks like:

B - O *

@ payslip (payslip Maven We: X

= = €' [J localhost:8080/jenkins/job/Poll_Build_UnitTest_Feature1_Branch/javadoc/ v =
Al Classes PACKAGE CLASS USE TREE DEPRECATED INDEX HELP
FixedComponent
GratuityComponent PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES
MNetComponent
TaxComponent =
VariableCompaonent Package payS"p
Class Description

FixedComponent
GratuityComponent
NetComponent
TaxComponent

VariableComponent

PACKAGE CLASS USE TREE DEPRECATED INDEX HELP

PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES
Copyright @ 2015. All rights reserved.

[298]

Chapter 5

4. Here are the test results:

&

£ Poll_Build_UnitTest_Featu

c
Jenkins

[localhost:&

x

®

Administrator

| log out

Jenkins

4 Back to Project

. Status

Changes

Console Output

= Edit Build Information

@ History

[7] Potting Log
Q} Git Build Data
[No Tags

D Test Result

@ Help us localize this page

Poll_Build_UnitTest_Feature1_Branch #2

Test Results

Test Result

0 failures

All Tests

Package Duration Fail (difff Skip (difff Pass

payslip 3Ims 0 0 1
Page generated: Dec 23, 2015 5:14:58 PM REST API

1 tests
Took 3 ms.
Zadd description

(diff) Total
+1 1

(diff)
+1

Jenkins ver. 1.635

[299]

Continuous Integration Using Jenkins — Part IT

The Jenkins job to merge code to integration

branch

The following figure will help us understand the overall task performed by the
current Jenkins job:

Jenkins Master

_____ B A |

FL Jenkins Job to merge code

: to Integration branch

f Merge code from Feature1 branch
=~ 1t S to Integration branch :

! Notification
e

1
Remote Feature1 Mean while on the Git server
branch !

| 0]

Merge

0]

Remote Integration
branch

Let's take a look at the Jenkins job to merge code on the integration branch:

1. On the Jenkins Dashboard, click on the Merge_Featurel_Into_Integration_
Branch Jenkins job.

2. Under Build History, you will see some builds.

[300]

Chapter 5

3. Right-click on any one of them and select Console Output to see the

actual logs.

fa Merge_Feature1_Into_Inte X

«~ C [localhost:2080

Jenkins

Jenkins Merge_Feature1_Into_Integration_Branch

4 Back to Dashboard
(), status

= Changes

& workspace

&) Build Now

(Y Delete Project

7 Configure

Build History

= Changes

E Console Output

- EditBuild Information

@ Delete Build

Administrator | log out

Project Merge_Feature1_into
_Integration_Branch

[add description

Disable Project
| .
B Workspace

0000

—=" Recent Changes

trend =
Upstream Projects
@Foll_Build UnitTest_Feature1_Branch
it failures Permalinks

« Last build (#4). 23 days ago
« Last stable build (#4). 23 days ago
« Last successful build (#4). 23 days ago

tion Branch/4 - generated: Jan 15, 2016 11:07:23PM RESTAP| Jenkins ver. 1.635

[301]

Continuous Integration Using Jenkins — Part IT

4. From the logs, you can see how code was merged from the Featurel branch
to the integration branch.

@'Console Output

Started by upstream project "Poll Build UnitTest_Featurel Branch" build number 2

originally caused by:

Started by an SCM change

Building in workspace C:‘\Jenkins\jobs\Merge_Featurel_Into_Integration_Branch\workspace

[workspace] § cmd /c call “C:\Program Files\Apache Software Foundation\Tomcat 8.@‘temp'\hudson3974299262958976381.bat"

C:\Jenkins\jobs\Merge_Featurel_Into_Integration_Branch\workspace>E:
E:\»cd Projectlenkins

E:\Projectlenkins»git checkout integration
Switched to branch 'integration'

:\ProjectJenkins>git merge featurel --stat
dating 55c96a7..57e745b

Up
Fast-forward

a/payslip/VariableComponent. java | 42 4+esrrto--o oo
e d /payslip/VariableComponentTest. java | 38 +ees--------
2 files changed, 36 insertions(+), 36 deletions(-)

:\Projectlenkinsrexit @
inished: SUCCESS

Real-time Jenkins pipeline to poll the

integration branch
By this time, the rest of the Jenkins job in the CI pipeline should be complete.

1. Go to the Jenkins Dashboard and click on the Continuous Integration
Pipeline view.

[302]

Chapter 5

2. We can see the Jenkins job to poll the integration branch for changes is

successfully completed, and the Jenkins job to publish the changes to
Artifactory is also completed too.

Continuous Integration Pipeline

Feature 1 #2
I_Eluild. Unit-Test
25 days ago 10 sec
I[-.-1er e
Feature 2 N/A

Build, Unit-Test

Merge

Integration #14

Static Code Analysis, Integration-Testing

25 days ago 20 5=z

I_Publish
25 days ago Zs

[303]

Continuous Integration Using Jenkins — Part IT

The Jenkins job to poll, build, perform static code

analysis, and perform integration tests

The following figure will help us understand the overall task performed by the
current Jenkins job:

Git Server Jenkins Master

Jenkins Job to poll, build,
perform static code analysis &
Integration test

_EMEL,@ R Poll

Static Code Analysis

i Builf& E
Integration test l

Sor;\arF{unner

Maven with JUnit

dependency
Publish Test results

¥ & Javadoc

Sonar Dashboard , Nofification

Trigger another Jenkins Job

@ Jenkins Job to upload code to Artifactory

[304]

Chapter 5

Let's take a look at the Jenkins job to poll, build, and perform static code analysis and
Integration test:

1. From the Jenkins Dashboard, click on the Poll_Build_StaticCodeAnalysis_
IntegrationTest_Integration_Branch Jenkins job.

2. You can see a link to access Javadoc and the test results in the
following screenshot:

f; Poll_Build_StaticCodefnal X

€& = C [localhost:8080/jenkins/job/Poll_Build_StaticCodeAnalysis_IntegrationTest_Integration_Branch,y¢| =

.@ Jenkins @Q @ Administrator | log out

Jenkins Poll_Build_StaticCodeAnalysis_IntegrationTest_Integration_Branch DISABLE AUTO REFRESH

4 Back to Dashboard

Project Poll_Build
_StaticCodeAnalysis_IntegrationTest
_Integration_Branch

), Status
= Changes
Wy Workspace
_—
) Build Now (Zadd description

© oot P

Configure
&
SonarQube

SonarQube
©) Javadoc

[7] Gt Foliing Log

Javadoc

./’0'_'“\.
(]
\ 5
E /
I\] Workspace
Build History trend =

MM
" Recent Changes
e

o #14
Dec23,2015508 P B‘ Latest Test Result (no failures)

o] RSS for all £§ RSS for failures -

[305]

Continuous Integration Using Jenkins — Part IT

3. Here are the test results:

ﬁ Poll_Build_StaticCodefnal, X

C | [localhost:8080

@ Administrator | log out

Jenkins Poll_Build_StaticCodeAnalysis_IntegrationTest_Integration_Branch #14 Test Results D

4 Back to Project

Test Result

Changes 0 failures

. Status

— N 1 tests
B8 Console Output Took 2 ms.
add description

= Edit Build Information

g History

2 ! All Tests

[] Potiing Log

Package Duration Fail (diffy Skip (difff Pass (diff} Total (diff)

Q} Git Build Data payslip 2ms 0 0 1+ 1+
g No Tags

[7] TestResurt
@ Help us localize this page Page generated: Dec 23, 201552849 PM REST APl Jenkins ver. 1.635

4. To see the Sonar analysis, go to the SonarQube dashboard or click on the
Sonar analysis link inside the console output logs: http://localhost:9000/
dashboard/index/my:projectjenkins.

[306]

Chapter 5

i SonarQube - Projectlenkir X
do =

€« C | [4 localhost:9000/dashboa

Is 5 Measures Rules Quality Profiles Quality Gates Settings More

sonarqube Dashboards «

5 ProjectJenkins

Overview Components Issues Settings ~ Maore =

Main Dashboard

Lines Of Code Files SQALE Rating Technical
83 5 2 6%
Java Directories Lines
1 130 Debt Issues
Functions Ih 4min 16
15 @ Blocker 0
Clazses Statements @ Critical 0
5 34 @ Major 4
Minor 12
Info 0
Duplications The project has passed the quality gate.
3

The Jenkins job to upload code to Artifactory

The following figure will help us understand the overall task performed by the
current Jenkins job:
Jenkins Master

Arifactory Server
Trigger w

Jenkins Job to
upload code to Artifactory

Artifactory P
Dashbga?d I : Publish code to Artifactory

‘f Notification
>

[307]

Continuous Integration Using Jenkins — Part IT

Let's take a look at the Jenkins job to upload code to Artifactory:

1. From the Jenkins Dashboard, click on the Upload_Package_To_Artifactory
Jenkins job.

- O X
QUplaaC_Pa:kage_’o_A'tr x
« C [localhost:

)b/Upload_Package_To_Artifactory,

@ Administrator | log out
Jenkins Upload_Package_To_Artifactory

Back to Dashboard -

ot Prou_ect Upload_Package_To
— Artifactory

= Changes -

L Workspace [#add description

(0 Delete Project

O Artifactory Build Info
2. Configure —
. - m s)
O Artifactory Build Info E Workspace
L0000
Build History trend =

—# Recent Changes
=

@ 0:@ Upstream Projects

@ Poll_Build_StaticCodeAnalysis_|ntegrationTest_Integration_Branch

o RSS for all 1§ RSS for failures Permalinks

» Last build #7). 25 min ago
» Last stable build (#7). 25 min ago

+ Last successful build (#7). 25 min ago

2. Click on the Artifactory build info link and it will take you to the Artifactory
Dashboard, where you can see the payslip-0.0.1.war file under the
prjectjenkins project.

[308]

Chapter 5

Summary

In this chapter, we first saw how to install and configure SonarQube. We saw how to
create a project inside SonarQube and how to integrate it with Jenkins using plugins.
We discussed how to install and configure Artifactory.

We then created the remaining jobs in the Continuous Integration pipeline that poll
the integration branch for changes, perform static code analysis, perform integration
testing, and upload the successfully tested code to Artifactory.

We also saw how to install and configure the delivery pipeline plugin. Although not
necessary, but it gave a good look to our Continuous Integration pipeline.

We saw how to configure the Eclipse tool with Git. In this way, a developer can
seamlessly work on Eclipse and perform all the code check in, check out, and push
operations from the Eclipse IDE alone.

Lastly, using an example, we saw the whole Continuous Integration pipeline in
action from the perspective of a developer working on a feature branch.

The Continuous Integration Design discussed in the book can be modified to suit
the needs of any type of project. The users just need to identify the right tools and
configurations that can be used with Jenkins.

[309]

Continuous Delivery
Using Jenkins

This chapter begins with the definition of Continuous Delivery (CD) and its relation
to Continuous Integration, followed by a Continuous Delivery Design. While
working on the Continuous Delivery Design, we will create various new Jenkins
jobs, but in a slightly different manner. For the very first time in this book, we will
use the parameterized triggers in Jenkins.

These parameterized triggers have proved to be the most useful and versatile features
in Jenkins. Using such triggers, we can pass the parameters among connected Jenkins
jobs, which makes communication among Jenkins jobs more powerful.

We will also see how to configure slaves in Jenkins. The Jenkins master-slave
configuration can be used in various scenarios. However, in this chapter, we
will use it to let a Jenkins master perform various tests on a Jenkins slave agent
(testing server).

In the process, we will see how Jenkins can be configured with various test
automation tools, such as Selenium, JMeter, and TestNG, to achieve Continuous
Testing. Automated testing in a continuous manner is an integral part of Continuous
Delivery. While implementing Continuous Delivery, we will modify some of the
Jenkins jobs that were part of Continuous Integration Design.

We will also create a nice visual flow for the Continuous Delivery pipeline using the
Jenkins delivery pipeline plugin, similar to the one we saw in the previous chapter.
Lastly, we will see our Continuous Delivery pipeline in action using a simple example.

These are the important topics that we will cover in this chapter:

* Jenkins master-slave architecture

* Passing parameters across Jenkins jobs

[311]

Continuous Delivery Using Jenkins

* User acceptance testing using Selenium and TestNG
* Performance testing using JMeter

* Configuring applications such as Maven, JDK, and Git on a Jenkins master
that can be used across all Jenkins slave machines

What is Continuous Delivery?
Continuous Delivery is the software engineering practice wherein production-ready

features are produced in a continuous manner.

When we say production-ready features, we mean only those features that have
passed the following check points:

* Unit testing

* Integration

* Static code analysis (code quality)

* Integration testing

* System integration testing

* User acceptance testing

* Performance testing

* End-to-end testing

However, the list is not complete. You can incorporate as many types of testing
as you want to certify that the code is production ready.

From the preceding list, the first four check points are covered as part of the
Continuous Integration Design discussed in the previous chapter. This Continuous
Integration Design, when combined with deployments (not listed here) and with all
sorts of automated testing can be safely called Continuous Delivery.

In other words, Continuous Delivery is an extension of the Continuous Integration
methodology to the deployment and testing phases of a Software Development Life
Cycle (SDLC). Testing in itself is a vast area.

In any organization, big or small, the previously mentioned testing is either
performed on a single environment or on multiple environments. If there are
multiple testing environments, then there is a need to deploy the package in all
those testing environments. Therefore, deployment activities are also part of
Continuous Delivery.

[312]

Chapter 6

The next figure will help us understand the various terminologies that were
discussed just now. The various steps a software code goes through, from
its inception to its utilization (development to production) are listed in the
following figure. Each step has a tool associated with it, and each one is part
of a methodology:

Continuous Delivery

............

7 Version Control Code .} g]t
Continuous Integration
Build Code mMawven
Unit Test JUnit
Integrate Code ‘} glt
Conti I cti
entinuous nspeonl Code Quality Analysis sonarqube
Acceptance Testing Build Integrated Code maven

Integration Test J{nit

Version Control Binary Code (package) O JFrog Artifactory

User Acceptance Testing User Accentance Test
mmmmmmmaaas ser Acceptance Tes @

Apac

Performance Testing o
I Performance Test J7 f."=l"
Tag Production ready Code ‘} glt

Continuous Delivery Design

The Continuous Delivery Design that we are going to discuss now is a simple
extension of the Continuous Integration Design that we discussed in Chapter 4,
Continuous Integration Using Jenkins — Part 1. This includes creating new Jenkins jobs
as well as modifying the already existing Jenkins jobs that are part of the Continuous
Integration Design.

[313]

Continuous Delivery Using Jenkins

Continuous Delivery pipeline

Continuous Integration is an integral part of Continuous Delivery. Hence, all Jenkins
jobs that were created as part of the Continuous Integration Design will fall into the
Continuous Delivery Design by default. From the previous chapters, we are familiar
with the following Continuous Integration pipelines:

* The pipeline to poll the feature branch

* The pipeline to poll the integration branch
However, as part of our CD Design, the pipeline to poll the integration branch will

be modified by reconfiguring the existing Jenkins jobs and adding new Jenkins jobs.
Together, these new Jenkins pipelines will form our Continuous Delivery pipeline.

Pipeline to poll the feature branch

The pipeline to poll the feature branch will be kept as it is, and there will be no
modifications to it. This particular Jenkins pipeline is coupled with the feature
branch. Whenever a developer commits something on the feature branch, the
pipeline is activated. It contains two Jenkins jobs that are as follows.

Jenkins job 1
The first Jenkins job in the pipeline performs the following tasks:

e It polls the feature branch for changes at regular intervals
* It performs a build on the modified code

e [t executes the unit tests

Jenkins job 2

The second Jenkins job in the pipeline performs the following task:

* It merges the successfully built and tested code into the integration branch

[314]

Chapter 6

Jenkins Job to merge code on integration branch
]

Feature "X" Branch

Jenkins Pipeline

Jenkins Job to poll, build and Unit test

Pipeline to poll the integration branch

L J

This Jenkins pipeline is coupled with the integration branch. Whenever there is
a new commit on the integration branch, the pipeline gets activated. However, it
will now contain five Jenkins jobs (two older and three new ones) that perform the

following tasks:

Jenkins job 1

The first Jenkins job in the pipeline will now perform the following tasks:

* It polls the integration branch for changes at regular intervals

e It performs a static code analysis of the downloaded code

* It executes the integration tests

» It passes the GIT_COMMIT variable to the Jenkins job that uploads the package

to Artifactory (new functionality)

. The GIT COMMIT variable is a Jenkins system variable that
% contains the SHA-1 checksum value. Each Git commit has
s a unique SHA-1 checksum. In this way, we can track which

code to build.

[315]

Continuous Delivery Using Jenkins

Jenkins job 2

The second Jenkins job in the pipeline will now perform the following tasks:

* It uploads the built package to the binary repository

* It passes the GIT_COMMIT and BUILD_ NUMBER variable to the Jenkins job that
deploys the package to the testing server (new functionality)

The variable BUILD NUMBER is a Jenkins system variable that
contains the build number. Each Jenkins job has a build number
for every run.

& We are particularly interested in the build number
/=" corresponding to Jenkins job 2. This is because this job
uploads the built package to Artifactory. We might need this
successfully uploaded artifact later during Jenkins job 3 to
deploy the package to testing server.

We will create three new Jenkins jobs 3, 4, and 5 with the following functionalities.

Jenkins job 3
The third Jenkins job in the pipeline performs the following tasks:

* It deploys a package to the testing server using the BUILD NUMBER variable

* It passes the GIT_COMMIT and BUILD_ NUMBER variable to the Jenkins job that
performs the user acceptance test

Jenkins job 4

The fourth Jenkins job in the pipeline performs the following tasks:
* It downloads the code from Git using the GIT COMMIT variable
* It performs the user acceptance test
* It generates the test results report

* It passes the GIT_COMMIT and BUILD_ NUMBER variable to the Jenkins job that
performs the performance test

Jenkins job 5
The last Jenkins job in the pipeline performs the following tasks:

* It performs the performance test

[316]

Chapter 6

It generates the test results report

Feature Branch

Integration Branch

Jenkins CD
Pipeline

Jenkins Job to poll for changes,
Build and perform Unit test

Jenkins Job to merge changes
to Integration branch

Jenkins Job 1o poll for changes,
'perform static code anlaysis and
Integration testing

Jenkins Job to publish code to
artifactory

Jenkins Job to deploy code to
Testing Server

Jenkins Job to perform User
Acceptance Test

Jenkins Job to perform
Performance Test

All the Jenkins jobs should have a notification step that can be
L~ configured using advanced e-mail notifications.

[317]

Continuous Delivery Using Jenkins

Toolset for Continuous Delivery

The example project for which we are implementing Continuous Delivery is a
Java-based web application. It's the same example project that was used in
Chapter 4, Continuous Integration Using Jenkins — Part I, and Chapter 5, Continuous
Integration Using Jenkins — Part 11

The following table contains the list of tools and technologies involved in everything
that we will see in this chapter:

Tools and technologies | Description

Java The primary programming language used for coding
Maven Build tool

JUnit Unit test and Integration test tools
Apache Tomcat server | Servlet to host the end product
Eclipse IDE for Java development

Jenkins Continuous Integration tool

Git Version control system
Artifactory Binary repository

SourceTree Git client

SonarQube Static code analysis tool

JMeter Performance testing tool

TestNG Unit test and integration test tool
Selenium User acceptance testing tool

The next figure demonstrates how Jenkins fits in as a CD server in our Continuous
Delivery Design, along with the other DevOps tools:

The developers have the Eclipse IDE and Git installed on their machines.
This Eclipse IDE is internally configured with the Git server. This enables the
developers to clone the feature branch from the Git server on their machines.

The Git server is connected to the Jenkins master server using the Git plugin.
This enables Jenkins to poll the Git server for changes.

The Apache Tomcat server, which hosts the Jenkins master, also has Maven
and JDK installed on it. This enables Jenkins to build the code that has been
checked-in on the Git Server.

Jenkins is also connected to the SonarQube server and the Artifactory server
using the SonarQube plugin and the Artifactory plugin, respectively.

This enables Jenkins to perform a static code analysis of the modified code.
Once all the build, quality analysis, and integration testing is successful, the
resultant package is uploaded to the Artifactory for further use.

[318]

Chapter 6

The package also gets deployed on a testing server that contains testing tools
such as JMeter, TestNG, and Selenium. Jenkins, in collaboration with the
testing tools, will perform user acceptance tests and performance tests on
the code.

Client with Eclipse IDE & Git

Client with Eclipse IDE & Git Client with Eclipse IDE & Git
E—e—g
Git Server
SourceTree
GIT Plugin
SonarQube Plugin Artifactory Plugin

SonarQube Jenkins Master Artifactory

Maven JOK

Jenkins Slave Jenkins Slave

L]

Testing Server Production Server

JRE JRE

Selenium JMeter

Application

E Developer's machine

[319]

Continuous Delivery Using Jenkins

Configuring our testing server

There are many types of testing that are performed by organizations to ensure they
deliver an operational code. However, in this book, we will see only user acceptance
testing and performance testing. We will do all this on a single testing server.

I chose an Ubuntu machine as our testing server. We need to set up some software
on our testing server that will assist us while we implement Continuous Delivery
and Continuous Testing.

Installing Java on the testing server

The testing server will contain an Apache Tomcat server to host applications such
as JMeter that run performance testing. Following are the steps to install JRE on the
testing server.

1. Toinstall JRE on the machine, open a terminal and use the following
command. This will update all the current application installed on the
testing server:

sudo apt-get update

2. Generally, Linux ships with the Java package. Therefore, check if Java is
already installed with the following command:
java -version

3. If the preceding command returns a Java version, make a note of it. However,

if you see the program Java cannot be found in the following packages,
then Java hasn't been installed. Execute the following command to install it:

sudo apt-get install default-jre

Installing Apache JMeter for performance
testing

Apache JMeter is a good tool for performance testing. It's free and open source. It can
run in both GUI and command line mode, which makes it a suitable candidate for
automating performance testing.

[320]

Chapter 6

Follow these steps to install Apache JMeter for performance testing:

1. Download apache-jmeter-2.13.tgz or whichever is the latest stable
version from http://jmeter.apache.org/download jmeter.cgi:

Apache JMeter 2.13 (Requires Java 6 or later)

Binaries

apache-jmeter-2.13 tgz md5 pap
apache-jmeter-2.13 zip md5 pap

2. Download the respective archive package, as shown in the
following screenshot:

0 Opening apache-jmeter-2.13.tkgz

You have chosen to open:
|l apache-jmeter-2.13.tgz

whichis: Tar archive (33.7 MB)
from: http:f/redrockdigimark.com

What should Firefox do with this file?

) Openwith | Archive Manager (default) =
@ save File

] Do this automatically For files like this from now on.

Cancel | 0K

[321]

http://jmeter.apache.org/download_jmeter.cgi

Continuous Delivery Using Jenkins

3. The archive file gets downloaded to the directory /home/<user>/Downloads.
To check, go to the download location and list the files by executing the
following commands. Substitute <user> with the user account on your
testing server machine by using the following command:
cd /home/<user>/Downloads

ls -1rt

@ S @ nikhil@nikhil-VirtualBox: ~/Downloads
nikhil@nikhil-virtualBox:~/Downloads$ 1ls -1lrt

total 34980
-rw-rw-r-- 1 nikhil nikhil 35326648 Feb 13 01:35
nikhil@nikhil-virtualBox:~/Downloadss [J

4. The installation is simple and only requires you to extract the archive file.
To do so, use the following command. The archive will be extracted inside
the same location:

tar zxvf apache-jmeter-2.13.tgz

5. To create a performance test case, we will use the GUI mode. To open the
JMeter console, navigate to the location where the jmeter. sh file is present
and run the jmeter. sh script as follows:

cd apache-jmeter-2.13/bin
/jmeter.sh

@ & @ nikhil@nikhil-virtualBox: ~/Downloadsfapache-jmeter-2.13/bin

nikhil@nikhil-virtualBox:~/Downloads/apache- jmeter-2.13/bin$.\jmeter.sh
.jmeter.sh: command not found

nikhil@nikhil-virtualBox:~/Downloads/apache- jmeter-2.13/bin$./jmeter.sh
Feb 13, 2016 1:48:54 AM java.util.prefs.FileSystemPreferencesS1 run
INFO: Created user preferences directory.

[322]

Chapter 6

Creating a performance test case

The following are the steps to create a performance test case:

1. We will create a new test plan by modifying the existing template:

Apache JMeter (2.13 r1665067)

File Edit Search Run Options Help

EORECE LEa[+]=]%~|[r]» %
7 TestPlan :
WorkBench Test Plan
Mame: [Test Plan
Comments:
User Defined Variables
MNarme: walue
Detail || Add || Add from Clipboard || Delete || Up || Down

[[] Run Thread Groups consecutively (i.e. run groups one at a time)
[] Run tearDown Thread Groups after shutdown of main threads

[] Functional Test Mode (i.e. save Response Data and Sampler Data)

Selecting Functional Test Mode may adversely affect performance.

Add directory or jar to classpath | Browse... || Delete || Clear

Library

[323]

Continuous Delivery Using Jenkins

2. Rename the test plan to Payslip Sample_PT, as shown in the
following screenshot:

Apache JMeter (2.13 r1665067)

File Edit Search BRun Options Help
Dielaod|d o« &ojg) +]=[<]r]»]

= h =
& Payslip_Sample_PT
WarkEench Test Plan

Name: [Payslip_Sample_PT]

Comments:

User Defined Variables
MNarme: Walue
Detail || Add || Add from Clipboard || Delete || Up || Down

[]Run Thread Groups consecutively (i.e. run groups one at a time)
[] Run tearDown Thread Groups after shutdown of main threads

[] Functional Test Mode (i.e. save Response Data and Sampler Data)

Selecting Functional Test Mode may adversely affect performance.

Add directory or jar to classpath | Browse... || Delete || Clear |

Library

[324]

Chapter 6

3. Save it inside the examples folder by clicking on the Save button from the
menu items or by pressing Ctrl + S:

File Edit Search Run Options Help
Delacd@ =« Kjoja |+ -]

= n B
& Payslip_Sample_PT
WarkBench Test Plan
Mame: [Payslip Sample PT

Payslip_Sample_PT.jmx

Save In: |ﬁ examples |V| E

isp
[y csvsample.jmx
[y performanceTestPlanMemoryThread.jmx

e)
s
File Name: [Payslip_Sample PT.jmx | Ipata)
Files of Type: |JMeter [.jmx] |V|
ear

Save || Cancel |

[325]

Continuous Delivery Using Jenkins

4. Add a thread group. To do so, right-click on the payslip Sample_ PT
and go to Add | Threads (Users) | Thread Group, as shown in the
following screenshot:

Payslip_Sample_PT.jmx (/home/nikhil/Downloads/apache-jmeter-2.13/bin/fexamples/Payslip_Sa
Eile Edit Search Bun Options Help

Dejal°ad MEEIRREAN
‘P‘. Payslip_Sample_PT | I .
WorkBench Add »| Threads (Users) »| Thread Group
Paste Chrly Test Fragment # setUp Thread Group L
Reset Gui Config Element | tearDown Thread Group
i b
Undo U hles
Redo Pre Processors #
— Post Processors b Value

SlDEbac Assertions »

Rl Listener »

Save Selection As...

Save Node As Image ctil-s

Save Screen As Image ctrl+shift-G

Enable from Clipboard | | Delete | | up | | Down

Disable

Toggle CtrlT utively (i.e. run groups one at a time)

Help Ips after shutdown of main threads
[| Functional Test Mode (i.e. save Response Data and Sampler Data)
Selecting Functional Test Mode may adversely affect performance.
Add directory or jar to classpath | Browse... || Delete || Clear |

Library

5. Name it appropriately and fill in the options as follows:
° Select Continue for the option Action to be taken after a

Sampler error

° Add Number of Threads (users) = 1

° Add Ramp-Up Period (in seconds) = 1

° Add Loop Count = 1

[326]

Chapter 6

Thread Group

Name: [Employees visiting the salary page

Comments:
Action to be taken after a Sampler error

® Continue O Start Next Thread Loop O Stop Thread (0 Stop Test) Stop Test Now

Thread Properties
Number of Threads (users): [1]

Ramp-Up Period (in seconds): |1

Loop Count: [] Forever |1

[| Delay Thread creation until needed

[]scheduler

6. Add a sampler by right-clicking on payslip_Sample_PpT and navigating to
Add | Sampler | HTTP Request, as shown in the following screenshot:

Payslip_Sample_PT.jmx (fhome/nikhil/Downloadsfapache-jmeter-2.13/binfexamples/Payslip_Sa

Eile Edit Search Run Options Help

Cela ouu ~ © X

plaj[+[=[%|[r]n] |

¢ L. Payslip_Sample_PT
“E — Thread Group
Employees visiting the salary page | -

WorkBench Add } Logic Controller »
Cut Chrlx Config Element »
Copy ctrl-c Timer 4
Paste Ctrlv Pre Processors !}, Thread () Stan
Duplicate cti+shif-c | Sampler » Access Log Sampler
Reset Gui Post Processors | AJP/1.3 Sampler
Remove Delete Assertions » BeanShell Sampler
Undo Listener ¥ BSF Sampler
F-hldo Debug Sampler

= FTP Request
Open...
| needed HTTP Request

Merge

lava Request

Save Selection As... JDBC Request

Save Node As Image ctil-G JMS Point-to-Point

Save Screen As Image Ctri+shift-G JMS Publisher

Enable JMS Subscriber

Disable JSR223 Sampler

Toggle Ctrl-T Junit Request

Help LDAP Extended Request

LDAP Request

Mail Reader Sampler
MongoDB Script

0S Process Sampler
4] i [| sMTP sampler

SOAP/XML-RPC Request
TCP Sampler
Test Action

[327]

Continuous Delivery Using Jenkins

7. Name the HTTP Request appropriately and fill in the options as follows:

[e]

machines>

HTTP Request

Port Number = 8080

Path = /payslip-0.0.1/

Server Name or IP = <ip address of your testing server

MName: \H'I'I'P Request

Comments:

Web Server

Server Name or IP: |192.168.1.101

HTTP Request

|Port Number: [3080

Implementation: |:|z| Protocol [httpl: Method: Content encoding:

Path: [jpayslip-0.0.1/

8. Add a listener by right-clicking on Payslip_Sample_PT and navigating to
Add | Listener | View Results Tree, as shown in the following screenshot:

Payslip_Sample_PT.jmx (/home/nikhil/Downloads/apache-jmeter-2.13/bin/examples/Payslip_Sample_PT.jmx) - Apache JMe

File Edit Search Run Options Help

Lela °d M

o
P

BENEIE

e

>»]

L3S

=

% [, Payslip_Sample_PT
¢ E‘ Employees visiting the salary page

| Thread Group

‘(’ HTTP Request

WaorkBench

p Thread O Stop Test (0 Stop Test Now

Add P Logic Controller »
Cut Crlx Config Element
Copy Ctrl-c Timer »
Paste Ctriv Pre Processors »
Duplicate cirltshifc | Sampler
Reset Gui Post Processors b
Remove Delete Assertions 3
undo Listener]
Redo
Open... A

P il needed
Merge
Save Selection As...
Save Node As Image ctrl&

Save Screen As Image ctrlshif-c
Enable

Disable

Toggle ChrlT

Help

Aggregate Graph
Aggregate Report
Assertion Results

Backend Listener
BeansShell Listener

BSF Listener

Comparison Assertion Visualizer
Distribution Graph (alpha)
Generate Summary Results
Graph Results

JSR223 Listener

Mailer Visualizer

Monitor Results

1l

Response Time Graph
Save Responses to afile
Simple Data Writer
Spline Visualizer
Summary Report

View Results in Table

View Results Tree

[328]

Chapter 6

9. Leave all the fields with their default values:

View Results Tree

Name: |View Results Tree

Comments;
Write results to file / Read from file
Filename | ‘ | Browse.. |Log/Display Only: []Errors []Successes
Text ~ || sampler result |
[]Sscroll automatically? Raw | Parsed

10. Save the whole configuration by clicking on the Save button in the menu
items or by pressing Ctrl + S.

Installing the Apache Tomcat server on the
testing server

Installing the Apache Tomcat server on Ubuntu is simple. We are doing this to host
our application so that it can be tested separately in an isolated environment.

[329]

Continuous Delivery Using Jenkins

The steps are as follows:

1. Download the latest Apache Tomcat sever distribution from http://
tomcat .apache.org/download-80.cgi. Download the tar.gz file, as
shown in the following screenshot:

Apache Tomcat - Apache Tomcat 8 Downloads - Mozilla Firefox

/ Apache Tomcat-Ap... %

€ apache.org EJ~ €| |Q search wBa U 3 & » | =
Problems? =
i 8.0.32

Security Reports

Find help . A . .

FAQ Pl_eas_e se_e the RE)?\DME file for packaging information. It explains what every

Mailing Lists distribution contains.

Bug Database - — -

IRC Binary Distributions
Get Involved * Core:

Overview © zip (pgp, md5, shat)

SVN Repositories o tar.gz (pgp, mds, shal)

Buildbot o 32-bit Windows zip (pgp, md5, sha1l)

Reviewboard © 64-bit Windows zip (pgp, md5, shal)

Tools o 64-bit Itanium Windows zip (pgp, md5, shal)

o 32-bit/64-bit Windows Service Installer (pgp, mds, shal)

Media * Full documentation:

Blog o tar.gz (pgp, mds, shat)

Twitter * Deployer:

. © zip (pgp, md5, shat)
Misc o tar.gz (pgp, mds, shal)

Who We Are e Extras:

Heritage o |MX Remote jar (pgp, md5, shal)

Apache Home o Web services jar (pgp, md5, shal)

Resources © JULI adapters jar (pgp, md5, shal)

T o JULl log4j jar (pgp, mds, shat)

Legal _ * Embedded:

e © tcs g a3 s

© zip (pgp, mds, shatl)

[330]

http://tomcat.apache.org/download-80.cgi
http://tomcat.apache.org/download-80.cgi

Chapter 6

2. Download the tar.gz file to the Downloads folder:

Opening apache-tomcat-8.0.32.tar.gz

You have chosen to open:
|l apache-tomcat-8.0.32.tar.qgz

whichis: Gzip archive (8.7 MB)
from: http://a.mbbsindia.com

What should Firefox do with this File?

) openwith | Archive Manager (default) =
@ save File

[l Do this automatically For Files like this from now on.

Cancel oK

3. We're going to install Tomcat in the /opt /tomcat directory. To do so, open a
terminal in Ubuntu.

4. Create the directory tomcat inside opt using the following command:
sudo mkdir /opt/tomcat

5. Then, extract the archive using the following command:

sudo tar xvf apache-tomcat-8*tar.gz -C /opt/tomcat --strip-
components=1

[331]

Continuous Delivery Using Jenkins

6. Start the Apache Tomcat server by executing the following command:
sudo su -
cd /opt/tomcat/bin
./startup.sh

@ S G root@nikhil-virtualBox: fopt/tomcat/bin

root@nikhil-virtualBox: /fopt/tomcat/bin# ./startup.sh

Using CATALINA_BASE: Jopt/tomcat

Using CATALINA_HOME: Jopt/tomcat

Using CATALINA_TMPDIR: /[opt/tomcat/temp

Using JRE_HOME: Jusr

Using CLASSPATH: Jopt/tomcat/bin/bootstrap. jar: /opt/tomcat/bin/tomcat- juli
Tomcat started.

root@nikhil-virtualBox: fopt/tomcat/bin# I

7. That's it! The Apache Tomcat server is up and running. To see it
running, open the following link in your favorite web browser:
http://localhost:8080/.

8. We must now create a user account in order to manage the services using
the manager app feature that is available on the Apache Tomcat server's
dashboard. We will do this by editing the tomcat-users.xml file.

9. To do so, use the following command in the terminal:

sudo nano /opt/tomcat/conf/tomcat-users.xml

[332]

Chapter 6

10. Add the following line of code between <tomcat-users> and
</tomcat-users>:

<user username=admin password=password roles=manager-
gui,admin-gui/>

= @ root@nikhil-VirtualBox: fopt/tomcat/bin
Modified

We Get Help ¢ Writeout [N Read File @Y Prev Page {{ Cut Text ¢d Cur Pos
Wl Exit Wl Justify Wl Where Is @l Next Page @il UnCut Textilll To Spell

11. Save and quit the tomcat -users.xml file by pressing Ctrl + X and then
Ctrl+Y.

12. To put our changes into effect, restart the Tomcat service by executing the
following commands:
cd /opt/tomcat/bin
sudo su -
./shutdown.sh

./startup.sh

[333]

Continuous Delivery Using Jenkins

Jenkins configuration

In order to assist the Jenkins jobs that perform various functions to achieve
Continuous Delivery, we need to make some changes in the Jenkins configuration.
We will see some newly introduced features in Jenkins in this section.

Configuring the performance plugin
The performance plugin will be used to publish performance test report. Follow the
these steps to install it:
1. From the Jenkins dashboard, click on Manage Jenkins. This will take you to
the Manage Jenkins page.
Click on the Manage Plugins link and go to the Available tab.
Type performance plugin in the search box.

Select Performance plugin from the list and click on the Install without

restart button:
Filter: | ©, performance plugin
Available
Install | Name Version
Performance plugin
This plugin allows you to capture reports from JMeter and JUnit . Jenkins 113

charts with the port of performance and
he feature of inal build status as good

on the reported error percentage

will generate graph
robustness. It inclu
unstable or failed, based

Install without restart Download now and install after restart

5. The download and installation of the plugin will start automatically:

[334]

Chapter 6

Installing Plugins/Upgrades

Preparation
« Checking internet connectivity

« Checking update center connectivity
* Success

Performance plugin “ Success

D Go back to the top page
{you can start using the installed plugins right away)

B> Restart Jenkins when installation is complete and no jobs are running

Configuring the TestNG plugin

The TestNG plugin will be used to publish the user acceptance test report.
Follow these steps to install it:

1. From the Jenkins dashboard, click on Manage Jenkins. This will take you to
the Manage Jenkins page.
Click on the Manage Plugins link and go to the Available tab.
Type TestNG Results Plugin in the search box.

Select TestNG Results Plugin from the list and click on the Install without
restart button, as shown in the following screenshot:

Filter: | . TestNG Results Plugin

dates Available 1stalled Advancec
Install | Name Version
TestNG Results Plugin
This plugin allows you to publish TestNG results generated 1.10

using {{org.testng.reporters. XMLReporter}}

t= B -

Install without restart Download now and install after restart

[335]

Continuous Delivery Using Jenkins

5. The download and installation of the plugin will start automatically:

Installing Plugins/Upgrades

Preparation
* Checking internet connectivity
+ Checking update center connectivity
+ Success

TestNG Results Plugin z.) Success

':‘:')’ Go back to the top page
(you can start using the installed plugins right away)

I:-:-) Restart Jenkins when installation is complete and no jobs are running

Changing the Jenkins/Artifactory/Sonar web
URLs

You can ignore the following steps if your Jenkins/ Artifactory and SonarQube URLs
are configured to anything apart from localhost:

1. Go to the Configure System link from the Manage Jenkins page.

2. Scroll down until you see the Jenkins Location section. Modify Jenkins
URL to http://<ip address>:8080/jenkins as shown in the following
screenshot. <ip addresss is the IP of your Jenkins server:

Jenkins Location

Jenkins URL hitp://192.168.1.101:8080/jenkins/ ®

System Admin e-mail address address not configured yet <nobody@nowhere> @)

[336]

Chapter 6

3. Scroll down until you see the Artifactory section. Modify the URL field to
http://<ip address>:8080/artifactory as shown in the screenshot.
<ip address> is the IP of your Artifactory server:

Artifactory
Artifactory servers Use the Credentials Plugin
Artifactory
URL . (ot) =
http://192.168.1.101:8081/artifactory ®

4. Scroll down until you see the SonarQube section. Modify the Server URL
field to http://<ip address>:9000 as shown in the following screenshot.
<ip address> is the IP of your SonarQube server:

SonarQube

Environment variables Enable injection of SonarQube server configuration as

build environment variables

If checked, jobs administrators will be able to inject 8 SonarQube server
sonfiguration as environment variables in the build.
SonarQube installations
dame
© Sonar

sever URL 111192 168 1.101-9000

Modifying the Maven configuration

We already discussed Maven installation and configuration in Chapter 4, Continuous
Integration Using Jenkins — Part 1. Here, we need to install another instance of Maven
in Jenkins. This is because in the up coming topics, we will configure Jenkins slave
on the testing server. The Jenkins jobs to perform user acceptance testing and
performance testing will run on the slave and will require a separate copy of Maven.
The current Maven installation will only work for Jenkins jobs that run on the master
node, that is, the Jenkins server itself. Follow the next few steps to configure another
instance of Maven:

1. On the Manage Jenkins page, scroll down until you see the Maven section.

[337]

Continuous Delivery Using Jenkins

2. You will see Maven installations already present. Click on the Add Maven
button to add a new one:

Maven
Maven installations Maven

Name Maven 3.3.9

MAVEN_HOME C:\Program Files\Apache Software Foundation\apache-maven-3.3.9

Install automatically ©

Delete Maven

Add Maven

List of Maven installations on this system

We could have also installed Maven on the machine
running the Jenkins slave. However, imagine a
% situation where there are many slaves. Installing
L= Maven on all of them would be tiring and time
consuming. Hence, the preceding configuration comes
in handy —single installation, but multiple uses.

3. Name it Maven for Nodes, select the check box Install automatically, and
choose the appropriate Maven version from the drop-down list. This is
shown in the following screenshot:

[338]

Chapter 6

Maven

Maven installations Maven

Name Maven 3.3.9

MAVEN_HOME C:\Program Files\Apache Software Foundation\apache-maven-3.3.9

Install automatically (7]
Delete Maven

Maven

Name Maven for Nodes

¥ Install automatically @

Install from Apache
Version| 339 ¥

Delete Installer

Add Installer ~

Delete Maven

Modifying the Java configuration

Like Maven, we also need to install another instance of Java to be used by the Jenkins
jobs running on slave agents. Follow the next few steps to configure another instance
of Java:
1. On the same page, scroll down until you see the JDK section.
2. You will see existing JDK installations. Click on the Add JDK button to add
anew one:

JDK

JOK installations JDK

Name JDK 18

JAVA_HOME ¢ \program Files\Javaljdk1.8.0_60

Install automatically (7]

Delete JDK

Add JDK

List of JD'K installations on this system

[339]

Continuous Delivery Using Jenkins

3. Name it JDK for Nodes, select the check box Install automatically, and
choose the appropriate JDK version from the drop-down list.

The JDK version depends on your Maven project.
s In our example, we are using JDK 1.8.0.

4. Agree to the terms and conditions by checking the option I agree to the Java
SE Development License Agreement.

5. The moment you do so, a new tab will open that will take you to the Oracle
website asking you to sign in or log in using an Oracle account.

6. Log in using your existing Oracle account or create a new one. This is
required to download the JDK:

JOK

JOK installations JDK
Name JOK 1.8

JAVA_HOME | 0 \proaram Files\Javaljdk1.8.0_60

Install automatically (7]
Delete JDK
JOK
Name JDK for Nodes
¥ Install automatically '@'

Install from java.sun.com
Version | Java SE Development Kit 8u74 v

¥ | agree to the Java SE Development Kit License Agreement
Delete installer

Add Installer -

Delete JDK

Modifying the Git configuration

Just like Maven and Java, we also need to create another instance of Git to be used
by Jenkins job running on slave machines. Follow these steps to configure another
Git instance:

1. On the same page, scroll down until you see the Git section.

[340]

Chapter 6

You can see existing Git installations. Click on the Add Git button to add a
new one.

From the options under Add Git menu, select JGit. This is an
experimental feature:

Git
Git installations

Git

Name Default Version Control Sytem

Path to Git executable C:\Program Files\Git\bin\git.exe (2]

Install automatically (7]
Delete Git

Add Git -
Git
JGit

That's it! There are no other configurations to it:

Git
Git installations
Git

Name Default Version Control Sytem

Path to Git executable C:\Program Files\Git\bin\git.exe

Install automatically

Delete Git

JGit

Delete Git

I@ I@ ®

Add Git ~

[341]

Continuous Delivery Using Jenkins

Configuring Jenkins slaves on the testing
server

In the previous section, we saw how to configure the testing server. Now, we will
see how to configure the Jenkins slave to run on the testing server. In this way,
the Jenkins master will be able to communicate and run Jenkins jobs on the slave.
Follow the next few steps to set up the Jenkins slave:

Jenkins Master-Slave Architecture

Applications on Cl Server Applications on Slave

Jenkins Master Jenkins Slave
= ssh/http protocol =
; Jenkins Cl Server 5 ; Slave Machine | ;
“ Jenkins Job
-Job's workspace on Master -Job's workspace on Slave

Timeline of a Jenkins Job during execution

Jenkins Job triggers from Jenkins Master
Artifacts if any, are copied to Jenkins workspace on Slave

Build steps run on the Slave machine

While the build runs on the Slave machine, it might use applications
present on the Slave machines or the Jenkins Cl Server. It can also
call the application present elsewhere

Post build action are performed either on the Slave machine or on the
Jenkins Cl Server

Logs are stored on the Job's workspace on the Master

1. Log in to the testing server and open the Jenkins dashboard from the
browser using the following link: http://<ip address>:8080/jenkins/.
Remember, you are accessing the Jenkins master from the testing server. <ip
address> is the IP of your Jenkins server.

[342]

Chapter 6

2. From the Jenkins dashboard, click on Manage Jenkins. This will take you
to the Manage Jenkins page. Make sure you have logged in as an Admin

in Jenkins.

3. Click on the Manage Nodes link. In the following screenshot, we can see that
the master node (which is the Jenkins server) is listed:

4 Back to Dashboard
7 Manage Jenkins
B rew Node

#. Configure

Build Queue

Mo builds in the queue.

Build Executor Status

1 Idle

2 Idle

S Name | Architecture
W st Windows 10 (amd64)

Data obtained 3 min 30 sec

Clock Difference Free Disk Space

In syne

3 min 29 sec

289.89 GB

3 min 29 sec

Free Swap Space Free Temp Space Response Time

492 GB 289.89 GB

Oms &

3 min 29 sec 3 min 29 sec

Refresh status.

3 min 29 sec

4. Click on the New Node button on the left-hand side panel. Name the new
node Testing Server and select the option Dumb Slave. Click on the OK

button to proceed:

4 Back to Dashboard
& Manage Jenkins
B New Node

#.. Configure

Build Queue

Mo builds in the queue.

Build Executor Status

1 ldle
2 Idle

Node name

Testing_Server

*' Dumb Slave

Adds a plain, dumb slave to Jenkins. This is called
"dumb” because Jenkins doesn't provide higher level of
integration with these slaves, such as dynamic
provisioning. Select this type if no other slave types
apply — for example such as when you are adding a
physical computer, virtual machines managed outside
Jenkins, etc.

VirtualBox Slave

oK

Adds VirtualBox slave.

[343]

Continuous Delivery Using Jenkins

5. Add some description, as shown in the next screenshot. The Remote root
directory value should be the local user account on the testing server. It
should be /home/<user>. The Labels filed is extremely important, so add
Testing as the value.

6. The Launch Method should be launch slave agents via Java Web Start:

4 Back to Dashboard Name Testing_Server
Manage Jenkins -
o Description Jenkins slave to on testing server
B New Node
of executors "
2. Configure
Remote root directory Thome/nikhil
Build Queue =
Labels !
Mo builds in the queue. Testing
Usage Utilize this node as much as possible v
Build Executor Status =
1 Idle Launch method Launch slave agents via Java Web Start v
2 ldle

Tunnel connection through

JVM options

Availability Keep this slave on-line as much as possible *

Node Properties

Environment variables

Tool Locations

7. Click on the Save button. As you can see from the following screenshot,

®

]

®

the Jenkins node on the testing server is configured but it's not running yet:

[344]

Chapter 6

4 Back to Dashboard
& Manage Jenkins
B new Node

#. Configure

Build Queue =

Mo builds in the queue.

Build Executor Status o=

B master

1 ldle
2 ldle

W Testing_Server (offline)

S Name | Architecture Clock Difference Free Disk Space Free Swap Space Free Temp Space Response Time
gu master Windows 10 (amd64) In sync 289.89 GB 481 GB 289.89 GB Oms 7
% Testing_Server N/A NIA NIA N/A @ Time out for last 1 try 7 i
Data obtained 41 sec 41 sec 41 sec 41 sec 41 sec 41 sec

Refresh status

8. Click on the Testing_Server link from the list of nodes. You will see
something like this:

| -
gﬁ Slave Testing_Server (Jenkins slave to on testing server)

Connect slave to Jenkins one of these ways:

. Launch agent from browser on slave

« Run from slave command line:

java -jar slave.jar -jnlpurl http://192.168.1.101:8088/jenkins/computer/Testing_Server/slave-agent.jnlp -secret
916d8164T7ccclb6Thba521d@c95232ec3b9933328T4cc9cd5e75b4cde5T139F7

Created by Administrator

Labels

Testing

Projects tied to Testing_Server

None

[345]

Continuous Delivery Using Jenkins

9. You can either click on the orange Launch button, or you can execute the
long command mentioned below it from the terminal.

10. If you choose the latter option, then download the slave.jar file mentioned
in the command by clicking on it. It will be downloaded to /home/<users>/
Downloads/.

11. Execute the following commands in sequence:

cd Downloads

java -jar slave.jar -jnlpUrl

http://192.168.1.101:8080/jenkins/computer/
Testing Server/slav e-agent.jnlp -secret
916d8164f7ccclb6£fb4521d0c9523eec3b9933328f4cc9cd5e75b4cd65£139£F7

* The preceding command is machine specific. Do not
% copy and paste and execute the same. Execute the
T command that appears on your screen.

@ S @ nikhil@nikhil-VirtualBox: ~/Downloads

nikhil@nikhil-virtualBox:~/Downloads$S java -jar slave.jar -jnlpUrl http://192.168.1.101
:8080/jenkins/computer/Testing_Server/slave-agent.jnlp -secret 916d8164f7cccib6fb4521de
c9523eec3b9933328f4ccocd5e75b4cd65F139F7

Feb 13, 2016 12:21:19 AM hudson.remoting.jnlp.Main createEngine

INFO: Setting up slave: Testing_Server

Feb 13, 2016 12:21:19 AM hudson.remoting.jnlp.MainSCuilistener <init>

INFO: Jenkins agent is running in headless mode.

Feb 13, 2016 12:21:19 AM hudson.remoting.jnlp.MainSCuilistener status

INFO: Locating server among [http://192.168.1.101:8080/jenkins/]

Feb 13, 2016 12:21:19 AM hudson.remoting.jnlp.MainSCuilistener status

INFO: Handshaking

Feb 13, 2016 12:21:19 AM hudson.remoting.jnlp.MainSCuilistener status

INFO: Connecting to 192.168.1.181:49855

Feb 13, 2016 12:21:19 AM hudson.remoting.jnlp.Main$CuilListener status
INFO: Trying protocol: INLPZ2-connect

Feb 13, 2016 12:21:20 AM hudson.remoting.jnlp.MainSCuilistener status
INFO: Connected

[346]

Chapter 6

12. The node on testing server is up and running, as shown in the

following screenshot:

¢ Back to Dashboard

Manage Jenkins

im S

New Node

Configure

b

Build Queue =

No builds in the queue

Build Executor Status -

B master

1 Idle
2 ldle

B Testing_Server

1 Idle
5 Name | Architecture Clock Difference
!E. master Windows 10 {amd64)
!E. Testing_Server Linux {amd64)
Data obtained 8 min 8 sec

28987 GB

2431 GB

8 min 7 sec

Free Disk Space Free Swap Space Free Temp Space Response Time

454 GB 28987 GB Oms 7
200 GB 2431 GB 3515ms 7
8 min 7 sec 8 min 7 sec 8 min T sec

Refresh status

Creating Jenkins Continuous Delivery

pipeline

This Continuous Delivery pipeline contains five Jenkins jobs: two old and three new
ones. In the current section, we will first modify the two existing Jenkins Jobs, and
later we will create three new Jenkins Jobs.

[347]

Continuous Delivery Using Jenkins

Modifying the existing Jenkins job

Before we begin creating new jobs in Jenkins to achieve Continuous Delivery, we
need to modify all the existing ones. The modifications that we intend to do are of
two types:

Map all the existing Jenkins jobs to a particular Jenkins node: We will do
this by modifying advanced project options in all the existing Jenkins jobs.
This is because the existing Jenkins jobs are currently running on the Jenkins
master node; this is a default behavior. However, since we have introduced
a new Jenkins slave node, it's important to tell all the Jenkins jobs where

to run. Not doing so will make Jenkins jobs choose nodes by themselves,
leading to failures.

Modifying the method through which a Jenkins job triggers another
Jenkins job: In our current Jenkins pipeline, which is the Continuous
Integration pipeline, the triggering phenomena for connected Jenkins jobs
are very simple. A Jenkins job simply triggers another Jenkins job without
passing any parameters. That was fine as long as we didn't feel the need to
do so. However, now we need to pass some important parameters across
the pipeline for use.

Modifying the advanced project

Follow these steps for all the Jenkins jobs:

1.

2.
3.
4

From the Jenkins dashboard, begin by clicking on any existing Jenkins job.
Click on the Configure link present on the left-hand side panel.
Scroll down until you see the Advanced Project Options section.

From the options, choose Restrict where this project can be run and
add master as the value for the Label Expression field, as shown in the
following screenshot:

#| Restrict where this project can be run (7]

Label Expression master @

Label is serviced by 1 node

[348]

Chapter 6

Modifying the Jenkins job that performs the
Integration test and static code analysis

The first Jenkins job in the pipeline performs the following tasks:

* It polls the integration branch for changes at regular intervals

e It performs a static code analysis of the downloaded code

* It executes the integration tests

* It passes GIT COMMIT variable to the Jenkins job that uploads the package to

Artifactory (new functionality)

The following figure will help us understand what the following Jenkins job does.
It's a slightly modified version of what we saw in the previous chapter:

Git Server Jenkins Master
. — I _ . =
. Remote Integration branch :

' § : =% Jenkins Job to poll, build,

: : perform static code analysis &
® : : Integration test
Poling
Mege ... 00 Poll
SonarQube Server

Sonar Aunner

Maven with JUnit
dependency

. Buld& | o E
Integration fest

’ Publish Test results
g%t & Javadoc

|

£

Sonar Dashboard .)
Notification

Trigger another Jenkins Job + Pass Premele}s

Q Jenkins Job to upload code to Artifactory
wr

[349]

Continuous Delivery Using Jenkins

Follow the next few steps to create it:

1. From the Jenkins dashboard, click on the Po11 Build
StaticCodeRAnalysis_IntegrationTest_ Integration Branch job.

Click on the Configure link present on the left-hand side panel.
Scroll down until you see Post-build Actions section.

Click on the Add post-build action button and from the drop-down list,
choose the option Trigger parameterized build on the other projects:

Aggregate downstream test results

Archive the artifacts

Publish Performance test result report
Publish TestNG Results

Record fingerprints of files to track usage
Git Publisher

SonarQube

E-mail Motification

Editable Email Notification

Trigger parameterized build on other projects

Add post-build action -

5. Add the values as shown in the next screenshot:

Trigger parameterized build on other projects ®

Build Triggers
Projects to build =

Upload_Package_To_Artifactory, (2]
Trigger when build is Stable v @
Trigger build without parameters ®
Add Parameters ~
Add trigger...
Delete

[350]

Chapter 6

6. Click on the Add Parameters button and choose Predefined parameters,
as shown in the following screenshot:

Add Parameters -

Boolean parameters

Build on the same node

Current build parameters

Farameters from properties file
Paszs-through Git Commit that was built
FPredefined parameters

Restrict matrix execution to a subset

Subversion revision

7. Add the values as shown in the following screenshot:

Trigger parameterized build on other projects

f
"

Build Triggers
Projects to build

Upload_Package_To_Artifactory, (2]
Trigger when build is Stable v @
Trigger build without parameters @
Predefined parameters
Paramelers | Gir coMMIT=${GIT_COMMIT}
(7]

Add Parameters

Add trigger...

8. Save the Jenkins job by clicking on the Save button.

[351]

Continuous Delivery Using Jenkins

Modifying the Jenkins job that uploads the package
to Artifactory

The second Jenkins job in the pipeline performs the following tasks:

* It uploads the built package to the binary repository
* It passes the GIT_COMMIT and BUILD_ NUMBER variables to the Jenkins job that
deploys the package in the testing server (new functionality)

The following figure will help us understand what the following Jenkins job does.
It's a slightly modified version of what we saw in the previous chapter:

Artifactory Server Jenkins Master
. = . Trigger, =]
72 Jenkins Job to
upload code to Artifactory
Artifacto 5 5
Da;hbaa?d ! : “ﬁf} Publish code to Artifactory
! Notification

Trigger another Jenkins Job + Pass Prameters

“2) Jenkins Job to
' deploy code to Testing Server

-t

Follow the next few steps to create the Jenkins job:
1. From the Jenkins dashboard, click the on Upload Package To Artifactory
job.
Click on the Configure link present on the left-hand side panel.

Scroll down to the Build Triggers section and deselect the Build after other
projects are built option.

4. Scroll down until you see Post-build Actions section.

[352]

Chapter 6

5. Click on the Add post-build action button and choose the option Trigger
parameterized build on the other projects from the drop-down list:

Agaregate downstream test results
Archive the artifacts

Fublish Performance test result report
Publish TestNG Results

Record fingerprints of files to track usage
Git Publisher

SonarCube

E-mail Motification

Editable Email Motification

Trigger parameterized build on other projects

Add post-build action

6. Add the values as shown in the screenshot:

Projects to build

Deploy_Artifact_To_Testing_Server, .@.
Trigger when build is Stable v -@.
Trigger build without parameters .@.
Add Parameters -
Add trigger... Delete
Delete

[353]

Continuous Delivery Using Jenkins

7. Click on the Add Parameters button and choose Predefined parameters:

Add Parameters -

Boolean parameters

Build on the same node

Current build parameters

Farameters from properties file
Fass-through Git Commit that was built
Fredefined parameters

Restrict matrix execution to a subset

Subversion revision

8. Add the values as shown in the screenshot:

Trigger parameterized build on other projects @
Build Triggers

Projects to build . : =

Deploy_Artifact_To_Testing_Server (2]

Trigger when build is Stable)

Trigger build without parameters ®

Predefined parameters

Parameters gy o NUMBER=${BUILD_NUMBER}
GIT_COMMIT=${GIT_COMMIT}

Add Parameters 7

Add trigger...

9. Save the Jenkins job by clicking on the Save button.

[354]

Chapter 6

Creating a Jenkins job to deploy code on the

testing server
The third job in the Continuous Delivery pipeline performs the following tasks:

* It deploys packages to the testing server using the BUILD NUMBER variable

* It passes the GIT_COMMIT and BUILD_ NUMBER variable to the Jenkins job that
performs the user acceptance test

Follow the next few steps to create it:

1. From the Jenkins dashboard, click on New Item.
2. Name your new Jenkins job Deploy Artifact To_Testing Server.

3. Select the type of job as Multi-configuration project and click on OK
to proceed:

ltem name Deploy_Artifact_To_Testing_Server

Freestyle project
This is the central feature of Jenkins. Jenkins will build your project. combining any SCM with
any build system, and this can be even used for something other than software build.

Maven project
Build a maven project. Jenkins takes advantage of your POM files and drastically reduces the
configuration.

External Job

This type of job allows you to record the execution of a process run outside Jenkins, even on a
remote machine. This is designed so that you can use Jenkins as a dashboard of your existing
automation system. See the documentation for more details.

® Multi-configuration project

Suitable for projects that need a large number of different configurations, such as testing on
multiple environments, platform-specific builds, etc.

Copy existing ltem
Copy from

OK

4. Scroll down until you see Advanced Project Options. Select Restrict where
this project can be run.

[355]

Continuous Delivery Using Jenkins

5. Add Testing as the value for Label Expression:

Advanced Project Options

¥ Restrict where this project can be run ®
Label Expression Testing ®
Label is serviced by 1 node
Quiet period '@'
Retry Count ®
Block build when upstream project is building (7]
Block build when downstream project is building ®
Use custom workspace ! :)
Display Mame @

6. Scroll down to the Build section.
7. Click on the Add build step button and choose the option Execute shell:

Execute Windows batch command

Execute shell

Invoke Ant

Invoke Maven 3

Invoke Standalone SonarQube Analysis

Invoke top-level Maven targets

SonarQube Scanner for MSBuild - Begin Analysis
SonarCQube Scanner for MSBuild - End Analysis

Trigger/call builds on other projects

Add build step -

8. Add the following code in the Command field:

o

The first line of the command downloads the respective package
from Artifactory to the Jenkins workspace:

wget http://192.168.1.101:8081/artifactory/
projectjenkins/$BUILD NUMBER/payslip-0.0.1.war

[356]

Chapter 6

The second line of command deploys the downloaded package to the
Apache Tomcat server's webapps directory:

mv payslip-0.0.l.war /opt/tomcat/webapps/payslip-0.0.l1l.war -£

Build

Execute shell @

Command| oot hitp://192.168.1.181:8081/artifactory/projectjenkins/$EUILD NUMBER/payslip-8.8.1.war

mv payslip-@.@.1.war fopt/tomcat/webapps/payslip-@.@.1l.war -f

See the list of available envirnnment variables

9. Scroll down to the Post-build Actions section. Click on the Add post-
build action button. From the drop-down list, choose the option Trigger
parameterized build on the other projects:

Aggregate downstream test results

Archive the artifacts

FPublish Performance test result report
Fublish TestNG Results

Record fingerprints of files to track usage
Git Publisher

SonarQube

E-mail Notification

Editable Email Notification

Trigger parameterized build on other projects

Add post-build action -

[357]

Continuous Delivery Using Jenkins

10. Add the values as shown in the screenshot:

Trigger parameterized build on other projects

Build Triggers
Projects to build

Trigger when build is Stable

Trigger build without parameters

Add Parameters -

Add trigger...

User Acceptance Test,

11. Along with triggering the build, we would also like to pass some predefined
parameters to it. Click on the Add Parameters button and select Predefined

parameters:

Add Parameters -

Boolean parameters

Build on the same node

Current build parameters

Parameters from properties file
Fass-through Git Commit that was built
FPredefined parameters

Restrict matrix execution to a subset

Subversion revision

12. Add the following values:

[358]

Chapter 6

Trigger parameterized build on other projects

Build Triggers
Projects to build

Trigger when build is Stable

Trigger build without parameters

Predefined parameters

Parameters | gy p_NUMBER=${BUILD_NUMBER}
GIT_COMMIT=${GIT_COMMIT}

Add Parameters ~

Add trigger...

13. Save the Jenkins job by clicking on the Save button.

Creating a Jenkins job to run UAT

User Acceptance Test,

The fourth job in the Continuous Delivery pipeline performs the following tasks:

* It downloads the code from Git using the GIT_comMMIT variable

* It performs the user acceptance test

* It generates the test results report

* It passes the GIT COMMIT and BUILD_ NUMBER variables to the Jenkins job that

performs performance test
Follow the next few steps to create it:

1. From the Jenkins dashboard, click on New Item.

2. Name your new Jenkins job User_Acceptance_Test.

[359]

Continuous Delivery Using Jenkins

3. Select the type of job as Multi-configuration project and click on OK
to proceed:

ltem name User_Acceptance Test

Freestyle project

This is the central feature of Jenkins. Jenkins will build your project, combining any SCM
with any build system, and this can be even used for something other than software build.

Maven project

Build a maven project. Jenkins takes advantage of your POM files and drastically
reduces the configuration.

External Job

This type of job allows you to record the execution of a process run outside Jenkins,
even on a remote machine. This is designed so that you can use Jenkins as a dashboard
of your existing automation system. See the documentation for more details.

Multi-configuration project

Suitable for projects that need a large number of different configurations, such as testing
on multiple environments, platform-specific builds, etc.

Copy existing Item
Copy from

OK

4. Scroll down until you see Advanced Project Options. Select Restrict where
this project can be run.

5. Add Testing as the value for Label Expression:

Advanced Project Options

¥ Restrict where this project can be run ®
Label Expression Testing ®
Label is serviced by 1 node
Quiet period '@'
Retry Count ®
Block build when upstream project is building ®
Block build when downstream project is building ®
Use custom workspace ! :)
Display Mame @

[360]

Chapter 6

6. Scroll down to the Source Code Management section.
7. Select the Git option and fill in the blanks as follows:

o

Repository URL is the location of the Git repository. It can be a
GitHub repository or a repository on a Git server. In our case it's
git://<ip addresss/ProjectJenkins/, where <ip addresss> is
the Jenkins server IP.

° Adds{cIiT _comMMmIT} in the Branches to build section. ${GIT coMMIT}
is the variable that contains the SHA-1 checksum value. Each Git
commit has a unique SHA-1 checksum. In this way, we can track
which code to build:

Source Code Management

MNone
CvVs
CVS Projectset
® Git
Repositories o _
P Repository URL i 11192.168.1.101/ProjectJenkins/ @
Credentials chone- v o Add
.@.
Advanced...
Add Repository Delete Repository
Branches to build P S .
Branch Specifier (blank for "any’) HGIT_COMMIT} @
Add Branch Delete Branch
Git executable gt v
Repository browser (Auto) v @

[361]

Continuous Delivery Using Jenkins

8. Scroll down to the Configuration Matrix section and click on the Add axis
button. Select JDK:

Configuration Matrix

Add axis -

JDK
Label expression
Slaves

User-defined Axis

9. If you remember, we have two JDK installations. Both will get listed,
as shown in the screenshot. However, select JDK for Nodes:

Configuration Matrix

JDK
JDK 1.8 ¥ JDK for Nodes

10. Scroll down to the Build section and click on the Add build step button.
Select the Invoke Maven 3 option:

Execute Windows batch command

Execute shell

Invoke Ant

Invoke Maven 3

Invoke Standalone SonarQube Analysis

Invoke top-level Maven targets

SonarQube Scanner for MSBuild - Begin Analysis
SonarQube Scanner for MSBuild - End Analysis

Trigger/call builds on other projects

Add build step -

[362]

Chapter 6

11. Add the values as shown in the following screenshot:

Build
Invoke Maven 3 (3)
Maven Version Maven for Modes v
Root POM payslip/pom_xml (3)
Goals and options clean test -Puat 3

12. Let's see the Maven command inside the Goals and options field in detail:

o

clean will clean any old built files

° The -puat option in the Maven command will invoke the project
named uat inside the pom.xm1 file

[363]

Continuous Delivery Using Jenkins

13. Scroll down to the Post-build Actions section and click on the Add post-
build action button. Select Publish TestNG Results from the options:

Agaregate downstream test results
Archive the artifacts

Build other projects

Fublish JUnit test result report
Fublish Javadoc

Fublish Performance test result report
Fublish TestNG Results

Record fingerprints of files to track usage
Git Publisher

SonarGube

E-mail Motification

Editable Email Motification

Trigger parameterized build on other projects

Add post-build action

14. Add the location of the testng-results.xml file, as shown in the
next screenshot:

Post-build Actions

Publish TestNG Results

TestNG XML report pattern payslip/target/surefire-reportsftestng-results xmil (7))

Advanced...

Delete

15. Click on the Add post-build action button again. From the drop-down list,
choose the option Trigger parameterized build on the other projects:

[364]

Chapter 6

Agaregate downstream test results

Archive the artifacts

Fublish Performance test result report
Publish TestNG Results

Record fingerprints of files to track usage
Git Publisher

SonarCube

E-mail Motification

Editable Email Motification

Trigger parameterized build on other projects

Add post-build action -

16. Add the values as shown here:

Build Triggers

Trigger parameterized build on other projects ®
Projects to build Perfarmance_Testing ®
Trigger when build is Stable ;)
Trigger build without parameters @
Add Parameters -
Add trigger...

[365]

Continuous Delivery Using Jenkins

17. Along with triggering the build, we would also like to pass some predefined
parameters to it. Click on the Add Parameters button and select Predefined
parameters:

Add Parameters

Boolean parameters

Euild on the same node

Current build parameters

Farameters from properties file
Fass-through Git Commit that was built
Fredefined parameters

Restrict matrix execution to a subset

Subversion revision

18. Add the following values:

Trigger parameterized build on other projects (2]
Build Triggers

Projects to build Performance_Testing (3]

Trigger when build is Stable v @

Trigger build without parameters (7]

Predefined parameters

Parameters gy p NUMBER=${BUILD_NUMBER}
GIT_COMMIT=${GIT_COMMIT}

Add Parameters ~

Add trigger...

[366]

Chapter 6

19. Configure advanced e-mail notifications exactly the same way as mentioned
in the previous chapters.

20. Save the Jenkins job by clicking on the Save button.

Creating a Jenkins job to run the performance
test

The fifth Jenkins job in the Continuous Delivery pipeline performs the following tasks:

* It performs the performance test

* It generates the test results report
Follow the next few steps to create it:

1. From the Jenkins dashboard, click on New Item.
2. Name your new Jenkins job performance Testing.

3. Select the type of job as Multi-configuration project and click on
OK to proceed:

Iltem name .
Performance_Testing

Freestyle project
This is the central feature of Jenkins. Jenkins will build your project, combining any SCM with
any build system, and this can be even used for something other than software build.

Maven project

Build a maven project. Jenkins takes advantage of your POM files and drastically reduces the
configuration.

External Job
This type of job allows you to record the execution of a process run outside Jenkins, even on a
remote machine. This is designed so that you can use Jenkins as a dashboard of your existing
automation system. See the documentation for more details.

® Multi-configuration project

Suitable for projects that need a large number of different configurations, such as testing on
multiple environments, platform-specific builds, etc.

Copy existing Item
Copy from

OK

[367]

Continuous Delivery Using Jenkins

4. Scroll down until you see Advanced Project Options. Select Restrict where
this project can be run.

5. Add Testing as the value for Label Expression:

Advanced Project Options

¥/ Restrict where this project can be run (7]
Label Expression Testing @
Label is serviced by 1 node
Quiet period '@'
Retry Count '@'
Block build when upstream project is building ®
Block build when downstream project is building (2]
Use custom workspace ®
Dizplay Name @

6. Scroll down to the Build section.
7. Click on the Add build step button and choose the option Execute shell:

Execute Windows batch command

Execute shell

Involke Ant

Invoke Maven 3

Invoke Standalone SonarQube Analysis

Invoke top-level Maven targets

SonarQube Scanner for MSEBuild - Begin Analysis
SonarQube Scanner for MSBuild - End Analysis

Trigger/call builds on other projects

Add build step -

8. Add the following commands in the Command field:

[e]

The first line of command goes to the directory where jmeter.sh
is located:

cd /home/<user>/Downloads/apache-jmeter-2.13/bin

[368]

Chapter 6

The second line of code executes the performance test:

./jmeter.sh -n -t examples/Payslip Sample PT.jmx -1
examples/test report.jtl

Build

Execute shell (7))

Command | /home/nikhil/Downloads/apache-jmeter-2.13/bin

.fimeter.sh -n -t examples/Payslip_Sample_PT.jml -1 examples/test_report.jtl

See the list of available environment varsbles

9. Scroll down to the Post-build Actions section. Click on the Add post-
build action button. From the drop-down list, choose the option Publish
Performance test result report:

Aggregate downstream test results
Archive the artifacts

Build other projects

Fublish JUnit test result report
Publish Javadoc

Fublish Performance test result report
Publish TestNG Results

Record fingerprints of files to track usage
Git Publisher

SonarQube

E-mail Motification

Editable Email Mofification

Trigger parameterized build on other projects

Add post-build action -

[369]

Continuous Delivery Using Jenkins

10. Choose the values shown here:
Post-build Actions

Publish Performance test result report @

Performance report AT @

Select mode: Relative Threshold ® Error Threshold

Use Error thresholds on single build: Unstable

Failed

Advanced...
Use Relative thresholds for build comparison: A (+)
Unstable % Range
Failed % Range
Compare with previous Build '® Compare with Build number
Compare based on
Average Response Time v

Performance display ¥/ Performance Per Test Case Mode

Show Throughput Chart

11. Click on the Add a new report button and select JMeter from the options:

Post-build Actions

Publish Performance test result report

Performance report e

Select mode: lago

Use Error thresholds on single build: | s
JMeterCsVY
JUnit
JmeterSummarizer

Wrkl

[370]

Chapter 6

12. Add the location of the test reportr.jtl file as /home/<local user
account>/Downloads/apache-jmeter-2.13/bin/examples/test report.

jtl:

Publish Performance test result report

Performance report

JMeter

Report files Ihome/nikhil/Downloads/apache-jmeter-2. 13/bin/examples/test_report_jtl (7]

% Add your respective user account on the testing server in place
s of <local user accounts.

13. Configure advanced e-mail notifications exactly the same way as mentioned
in the previous chapters.

14. Save the Jenkins job by clicking on the Save button.

Creating a nice visual flow for the
Continuous Delivery pipeline

Our pipeline to perform the Continuous Delivery now contains the following
Jenkins jobs:

® Poll Build StaticCodeAnalysis IntegrationTest Integration_
Branch

® Upload Package To Artifactory

®* Deploy Artifact To_ Testing Server

® User Acceptance Test

®* Performance Testing

[371]

Continuous Delivery Using Jenkins

In this section, we will create a view inside the Jenkins dashboard using the delivery
pipeline plugin. This view is nothing but a nice way of presenting the Continuous
Delivery flow:

1. Go to the Jenkins dashboard and click on the + tab highlighted in
the screenshot:

S w Name |

Cleaning_Temp_Directory

Deploy Artifact_To Testing_Server

Merge_Featurei_Into_Integration_Branch

g Jenkins_Home Directory_Backup

Merge Feature? Into_lntegration_Branch

Performance_Testing

-J Poll_Build StaticCodeAnalysis_IntegrationTest Integration_Branch

Poll_Build UnitTest_Feature1_Branch

Poll_Build_UnitTest_Feature2 Branch

d Upload Package To_Arifactory

User Acceptance_Test

o

2. Provide Continuous Delivery Pipeline as the View name and select
Delivery Pipeline View from the options, as shown in the next screenshot.
3. Click on OK to finish:

[372]

Chapter 6

Viewname continuous Delivery Pipeline

® Delivery Pipeline View
Shows one or more delivery pipeline instances.

List View

Shows items in a simple list format. You can choose which jobs are to be displayed in which view.
My View

This view automatically displays all the jobs that the current user has an access to.

OK

4. Now, you will see a lot of options and blanks to fill in. Scroll down until you
see the View settings section and fill it in as follows:

o

Select the Number of pipeline instances per pipeline = 0

o

Number of columns = 1

o

Update interval = 1

o

Also, check the Display aggregated pipeline for each pipeline option

Name Continuous Delivery Pipeline

View settings

Mumber of pipeline instances per pipeline 0 v

®

Display aggregated pipeline for each pipeline & ©
Mumber of columns y v @
Sorting None v @
Update interval y @

Leave the rest of the options at their default values and scroll down until you
see the Pipelines section shown in the next screenshot.

[373]

Continuous Delivery Using Jenkins

6. Click on the Add button beside Components three times:

7. Fill in the values exactly as shown in this screenshot:

Pipelines

Components

Regular Expression

Pipelines

Components

Regular Expression

Name
@ Please supply a title!

Initial Job Poll_Build_UnitTest_Feature1_Branch

Final Job (optional) Merge_Featurel_Into_Integration_Branch

Name
@ Please supply a title!
Initial Job Poll_Build_UnitTest_Feature2_Branch

Final Job {optional) Merge_Feature2_Into_Integration_Branch

Mame

@ Please supply a title!
Initial Job

Final Jobk (optional) Performance_Testing

Add

Add

Add

Add

(%)

'@
'@

@
'@

L2

@

Poll_Build_StaticCodeAnalysis_|ntegrationTest_Integration_Branch ¥ @)

'@

[374]

Chapter 6

10.

11.
12.

13.

Click on OK to save the configuration.
Now, come back to the Jenkins dashboard.

Right-click on the Poll_Build_StaticCodeAnalysis_IntegrationTest_
Integration_Branch Jenkins job and select Configure, as shown in the
following screenshot:

Poll_Build_StaticCodeAnalysis_IntegrationTest_Integration_Branch

©0©

= Changes

e1_Branch
i Workspace

e2_Branch
{2 Build Now

ctory

@ Delete Project

©00

2 Configure

lcon: SML
SonarQuhe

0 Javadoc

EJ Git Polling Log

Look for the Delivery Pipeline configuration option and select it.
Here, set Stage Name as cD and Task Name as Static Code Analysis,
Integration-Testing.

Save the configuration by clicking on the Save button at the bottom of the
page before moving on.

¥ Delivery Pipeline configuration

Stage Mame co ®

Task Name Static Code Analysis, Integration-Testing (?)

[375]

Continuous Delivery Using Jenkins

14.
15.

16.
17.
18.

19.
20.

21.
22.
23.

Now, come back to the Jenkins dashboard.

Right-click on the Upload_Package_To_Artifactory Jenkins job and
select Configure.

Look for the Delivery Pipeline configuration option and select it.
Then, set Stage Name as cD and Task Name as Publish to Artifactory.

Save the configuration by clicking on the Save button at the bottom of the
page before moving on.

¥ Delivery Pipeline configuration

Stage Name cD =

Task Name Publish to Artifactory (7]

Now, come back to the Jenkins dashboard.

Right-click on the Deploy_Artifact_To_Testing Server Jenkins job and
select Configure.

Look for the Delivery Pipeline configuration option and select it.
Here, set Stage Name as ¢D and Task Name as Deploy to Testing Server.

Save the configuration by clicking on the Save button at the bottom of the
page before moving on.

¥ Delivery Pipeline configuration
Stage Mame cD =

Task Name Dieploy to Testing Server (7]

[376]

Chapter 6

24.
25.
26.
27.
28.

29.
30.
31.
32.
33.

Now, come back to the Jenkins dashboard.

Right-click on the User_Acceptance_Test Jenkins job and select Configure.
Look for the Delivery Pipeline configuration option and select it.

Here, set Stage Name as cD and Task Name as User Acceptance Test.

Save the configuration by clicking on the Save button at the bottom of the
page before moving on:

¥ Delivery Pipeline configuration
Stage Mame cD @

Task Name User Acceptance Test (7]

Now, come back to the Jenkins dashboard.

Right-click on the Performance_Testing Jenkins job and select Configure.
Look for the Delivery Pipeline configuration option and select it.

Here, set Stage Name as cD and Task Name as Performance Test.

Save the configuration by clicking on the Save button at the bottom of the
page before moving on:

#| Delivery Pipeline configuration

Stage Name ch @

Task Name Performance Test @

[377]

Continuous Delivery Using Jenkins

34. Come back to the Jenkins dashboard and click on the Continuous Integration
Pipeline view. Tada!! This is what you will see:

Continuous Delivery +

Feature 1 #2
Il_sund. Unit-Test
Z months ago 102z

Ir-.-Ierge
2 months ago 0sec

Feature 2 NIA
Build, Unit-Test

Merge

cD #2

IPuinsh to Artifactory
Deploy to Testing Server
User Acceptance Test

Performance Test

Creating a simple user acceptance test
using Selenium and TestNG

In order to perform a user acceptance test, we won't be installing any tool or software
on the testing server nor anything on the Jenkins server or the developer's machine.

Tools such as Selenium and TestNG will be defined as part of the pom.xm1 file and
everything will be done using Eclipse. The user acceptance test will be a part of the
code, just like the unit test and the integration test.

[378]

Chapter 6

Installing TestNG for Eclipse

To install TestNG, follow these steps:

1. From the Eclipse IDE menu, go to Help | Eclipse Marketplace.
2. Inthe window that opens, select the Search tab and look for Testng.

3. Once you see TestNG for Eclipse, install it:

E.} Eclipse Marketplace O *

Eclipse Marketplace

Select solutions to install. Press Finish to proceed with installation.
Press the information button to see a detailed overview and a link to more information.

Search Recent Popular Installed ', January Newsletter
Find: | Testng =8 All Markets ~ | | All Categories ~| | Go

TestNG for Eclipse

TestNG plug-in for Eclipse. more info

‘ by Cédric Beust, Apache 2.0
' testng junit testing unit integration functional selenium
54 Installs: 254K (9,926 last month) Install
Marketplaces
'::?\' nstall Mow > Finish Cancel

[379]

Continuous Delivery Using Jenkins

Modifying the index.jsp file
Our user acceptance test is going to be a simple example in which we will try
to check the payslip page title. It should be pAY sLIP.

Following are the steps to modify the index. jsp file:

1. Open index. jsp from the following path: /payslip/src/main/webapp/.

2. Add the title PAY SLIP to the page by modifying the title, as shown in the
screenshot:

|z *indexjsp &2

<head>

<meta http-equiv="Content-Typs" content="text/ /html; chasrsst=IS0-5850-1">
7

<style>

table h5 {margin: i0px; font-size: 14px}

table td {text-align: left;}

L]

IS]

</fstyler

[
[P

<table border="1" style="width: 400" align="center">
<trl>

<td»<hE>Salary Components</hi></cd>

<td><hS>Monthly</hi></cd>

[
1 & i

oo m

<td>Basic Pay</td>
<td»<3@ page import="payslip.FixedComponsnt™ %>
<% FixedComponent Cl1 = new FixedComponent():

ka Rd R R R
Lh Rk

Modifying the POM file

This is where we will configure Selenium and the TestNG plugin. Along with that,
we will also create two profiles inside the pom. xml file—one named sit and another
named uat.

[380]

Chapter 6

The sit profile will be executed as part of the Continuous Integration. The uat
profile will be executed while performing user acceptance testing. The steps are
as follows:

1.
2.

Open the pom.xm1 file from the following path: /payslip/.
Replace the content of the file with the following code:
<project xmlns=http://maven.apache.org/POM/4.0.0

xmlns:xsi=http://www.w3.0rg/2001/XMLSchema-instance

Xsi:schemalLocation=http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4 0 0.xsd>

<modelVersion>4.0.0</modelVersion>
<groupId>employee</groupld>
<artifactIdspayslip</artifactlIds>
<packagings>war</packaging>
<version>0.0.1l</versions>
<name>payslip Maven Webapp</name>
<urlshttp://maven.apache.org</url>

<dependenciess>
<dependencys>
<groupId>junit</groupld>
<artifactId>junit</artifactId>
<versions>4.12</version>
<scope>test</scope>
</dependency>
<dependencys>
<groupIds>org.seleniumhqg.selenium</groupld>
<artifactIds>selenium-java</artifactId>
<version>2.51.0</version>
</dependency>
<dependencys>
<groupIds>org.testng</groupld>
<artifactId>testng</artifactId>
<versions>6.8</version>
<scope>test</scope>
</dependency>
</dependencies>
<profiless>
<profile>
<ids>sit</id>

[381]

Continuous Delivery Using Jenkins

<builds>
<pluginManagement >
<pluginss>
<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactIds>
<version>2.19</version>
</plugin>
<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-failsafe-plugin</artifactIds>
<version>2.19</versions>
<executionss>
<execution>
<goals>
<goal>integration-test</goals>
<goals>verify</goals>
</goals>
<configurations>
<includes>
<include>**/IT*.java</include>
<include>**/*IT.java</include>
</includes>
</configurations>
</execution>
</executions>
</plugin>
</plugins>
</pluginManagement >
<plugins>
<plugins>
<grouplds>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactIds>
<version>3.3</version>
<configurations>
<sources>1l.7</sources
<target>1.7</target>
</configurations>
</plugin>
<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-failsafe-plugin</artifactIds>
</plugin>

[382]

Chapter 6

<plugins>
<groupld>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactIds>
<configurations>
<skip>${surefire.skip}</skip>
</configurations>
</plugin>
</plugins>
</build>
<reportings>
<pluginss>
<plugins>
<grouplds>org.apache.maven.plugins</groupId>
<artifactIdsmaven-surefire-report-
plugin</artifactId>
<version>2.19</versions>
</plugin>
</plugins>
</reporting>
</profile>
<profile>
<idsuat</id>
<builds>
<pluginss>
<plugins>
<grouplds>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactIds>
<versions>3.3</versions>
<configurations
<sources>1l.7</source>
<target>1l.7</target>
</configurations>
</plugins>
<plugin>
<grouplds>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.19</versions>
<inheriteds>true</inherited>
<configurations
<suiteXmlFiles>
<suiteXmlFiles>testng.xml</suiteXmlFile>
</suiteXmlFiles>

[383]

Continuous Delivery Using Jenkins

</configurations>
</plugins>
</plugins>
</builds>
</profile>
</profiles>
</projects>

Creating a user acceptance test case

Perform the following steps to create a user acceptance test case:

1. Right-click on the payslip package and go to New | Class, as shown in the
following screenshot:

[.3 Resource - Eclipse
File Edit Mavigate Search Project Run Design Window Help

g - 2 & = i Q- &~ - - - -
= [Project Explorer 22 ==3 | = = O || [M payslip2/pomxml 52
0= | v "z_j » payslip [Projectlenkins featurel] Overview
El Deployment Descriptor: Archetype Created Web Application

w ™% Java Resources Artifact

By src/matn/ v Group |d: employee
~ [src/test/java pld: ploy

v 2 payslip Artifact d: = payslip2
i]
| Fixe MNew » ™ Project..
2 Gra
EJ, Hel Ge Into @ Annotation
i]
| en Type Hierarc ass
[Met Open Type Hi hy F4 Cl
H Ta Show In Alt+Shift+W > (& Enum
4 Vari Interface
=i, Libraries [Copy Ctrl+C Ci
=), JavaScript Resc 5= Copy Qualified Name B Package
5 Deployed Resc ™ Paste Ctrl+V &7 HTML File
Egy bin 3 Delete Delete & ISP File
e Remove from Context Ctrl+ Alt+ Shift+ Dow
£ target temove from Conte Ctrb+Alt+Shift-Down | 45 pipe
&) pom.xml Build Path ’ & Listener
v =2 payslip2 Source Alt+5Shift+5 » 6 Sewviet
Deployment D Refactor AltShift+T >
v 7% Java Resources ™ Example...
B ere/main/i; L2 Import.
[sre/main/ji L2 .
~ [sroftestfjav fuy Export... =1 Other... Ctrl+N
g

[384]

Chapter 6

2.

In the window that opens, name the class file uat and leave the rest of the
options at their default values.

Click on the Finish button:

E Mew Java Class

Jawva Class

Create a new Java class.

Source folder:

Package:

[] Enclosing type:

Mame:

Modifiers:

Superclass:

Interfaces:

| payslip/src/test/java

| payslip

| Uat| |
(®) public () package private protected
[Jabstract [final static

|java.|ang.0bject

Which method stubs would you like to create?

[] public static void main(String[] args)
[] Constructors from superclass
Inherited abstract methods

Do you want to add comments? (Configure templates and default value here)

|:| Generate comments

Browse...
Browse...

Browse...

Browse...

Add...

Remove

Cancel

[385]

Continuous Delivery Using Jenkins

4. The file will open for editing. Replace the content of the file with the
following code:

package payslip;

import org.openda.selenium.WebDriver;
import org.openda.selenium.firefox.FirefoxDriver;
import org.testng.Assert;
import org.testng.annotations.Test;
import org.testng.annotations.BeforeTest;
import org.testng.annotations.AfterTest;
public class Uat {
private WebDriver driver;
@Test
public void testEasy() {

driver.get (http://<ip address>:8080/payslip-
0.0.1/);

String title = driver.getTitle() ;
Assert.assertTrue (title.contains (PAY SLIP)) ;

}

@BeforeTest
public void beforeTest ()

driver = new FirefoxDriver () ;
@AfterTest

public void afterTest() {
driver.quit () ;

}

5. Replace <ip addresss> in the preceding code with the IP address of the
testing server.

6. Save the file.

Generating the testng.xml file

Perform the following steps to generate the testng.xm1 file:

1. Right-click on the newly created Uat . java file and navigate to TestNG |
Convert to TestNG:

[386]

@ Resource - Eclipse

File Edit Mavigate Search Project Run Window Help
Lzﬁ - E m % - E Q'-' - - - ’m:] <
& |7 Project Explorer &2 = <,==='g>| = = 08
EE v 5.",% » payslip [Projectlenkins featurel] ~
@ '3 Deployment Descriptor: Archetype Created Web Application
v ﬁﬁ“, Java Resources
i) srclmamljéva — R
v (# > sroftest/java
v Hi = payslip Open Type Hierarchy F4
Uj FoedCor g Al Shift+ W >
[J} Gratuity!
0 Hellorr; ~ OPen ks
[2] NetCom Open With »
EE' Ta"c,c'm Copy Ctrl+C
[13 Uatjava
3} Variablet 5= Copy Qualified Mame
B Libraries H Paste Crl+V
=\ JavaScript Resource 3¢ Delete Delete

L% Deployed Resource

(5 bin
&y = src
[target
[} > pomaxml
bl
-l

H® Create TestNG class
I Convertto TestNG

Remove from Context Ctrl+Alt+Shift+ Down

Build Path »
Source Alt+Shift+5 »
Refactor Alt+Shift+T »
Import...

Export...

Refrech F5
References ¥
Declarations »
Run As ¥
Debug As »
Profile As ¥
Validate

Replace With >
Restore from Local History...

Web Services ¥
Team ¥
Compare With >
TestMG >
Properties Alt+Enter

[387]

Continuous Delivery Using Jenkins

2. In the window that opens, you will see some code listed in the preview field:

E Refactoring

Generate testng.xml

Location: | fpayslip/testng.xml

O X

Browse...

Suite name: | Suite

Test name: | Test

Class selection: | Classes ~ | Parallel mode: none

Preview

~ | Thread count: I:I

<7eml version="1.0" encoding="UTF-8"?>

<suite name="5uite" parallel="none">
<test name="Test">
<classes>
<class name="payslip.Uat"/>
</classes>
< /ftest> «l-- Test --»
</suite> <!-- Suite -->

<IDOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd" >

Code generation

suite() methods: | permove ~

I/"_?\u < Back

3. Replace it with the following code:

<?xml version=1.0 encoding=UTF-87?>
<!DOCTYPE suite SYSTEM http://testng.org/testng-1.0.dtd>

<suite name=Suite>
<test name=Test>
<classes>
<class name=payslip.Uat/>
</classes>

Cancel

[388]

Chapter 6

</test> <!-- Test -->
</suite> <!-- Suite -->

4. Save the changes to the file.

Continuous Delivery in action

Now, we are ready to test our Continuous Delivery pipeline. Let's assume the role of
a developer who intends to work on the featurel branch. Our developer is working
on a Windows 10 machine with the following software installed on it:

* The latest version of Eclipse (Eclipse Mars)

* Apache Tomcat server 8

* Git2.6.3

* SourceTree

* JavaJDK 1.8.0_60

* Maven3.3.9
We won't modify any code in order to trigger our Continuous Delivery pipeline,
as in the previous section we made considerable changes to our code base. I guess

checking in those changes would be more than sufficient. Nevertheless, you are free
to make changes to your code.

Committing and pushing changes on the
feature1 branch

The following figure gives an overview of the operation that we will perform:

Git Server
J.:J. __ S — I |

Cloned Feature1 branch Feature1 branch
Eclipse IDE [| []
o eheicout ©
¥

) D

: : Push:
___________________ : Mt
Commit > : :)

[389]

Continuous Delivery Using Jenkins

Perform the following instructions to commit and push changes:

1. Open Eclipse IDE.

2. Right-click on the project payslip and go to Team | Commit...:

E’l} Resource - Eclipse

File Edit MNavigate Search Project Run Window Help
S~ = B Q- - v v -
& | [Project Explorer &2 == | = =08
o= | w Efj > payslip [Projectlenkins featurel]
El | Mew ¥
E Go Into
I - .
0 Show In Alt+Shift<W > = Commit.. Ctrl+2
i Stashes
C Ctrl+C
¢ = oFY n 5 Push to Upstream
JEY C lified N
g opy Qualified Name u Fetch from Upstream
) Past Ctrl+V
[aste w 4 Push Branch 'featurel'...
o Delete Delete
= @ Pull
I Remaowve from Context Ctrl+Alt+Shift+ Down
Build Path > =i
Ih -
Refactor AltsShifteT > 52 Switch To
Advanced
Import ¥
Export » 4§ Synchronize Workspace
&7 Refresh F5 lgeies
Close Project T LEERs
Close Unrelated Projects E Rebase...
Validate = L=
Show in Remote Systems view Create Patch...
Run As ¥ Apply Patch...
>
Debug As Z+ Add o Index
i >
Profile As “Z Remove from Index
[>
Replace With £ Ignore
Restore from Local History...)
Maven , [} Showin History
Java EE Tools 5 &+ Show in Repositories View
Team ¥ N7 Disconnect
Compare With ¥
Configure ¥
Source ¥
TestMG »
Properties Alt+Enter

[390]

Chapter 6

3. Inthe window that opens, add some comments (as shown in the screenshot)
and select the modified code files that you wish to commit:

@] Commit Changes >

Commit Changes to Git Repository
i

Gl

= o d
_’ -

Commit message

{R'

‘created uat test and modified the pom file to have two profiles|.

Author: nikhil <nikhilpathania@hotmail.com:>

Committer: | nikhil <nikhilpathania@hotmail.com=

Files (16/16) 2|| [
type filter text

Status Path 2
M payslip/pom.xml
=] payslip/src/main/webapp/index.jsp
¥ payslip/.classpath
54 payslip/.gitignore
¥ payslip/.project
¥s payslip/.settings/.jsdtscope
[5 pavslip/ settinas/ora.eclipse.idt.core.prefs

Open Git Staging view | Commit and Eush| | Commit | Cancel

4. Once done, click on the Commit and Push button.

5. You can see the code has been committed on the cloned featurel branch,
and it's also pushed to the remote featurel branch.

[391]

Continuous Delivery Using Jenkins

6. Click on the OK button to confirm the commit and push operations:

@ Push Results: Projectlenkins - origin *

Pushed to ProjectJenkins - origin

~ a0 featurel — featurel [9a7d0eb..57745b] (1) =
A= 9a7d0eb5: created uat test and modified the pom file to have two profiles. (nikhil on 16 Feb, 2016 10:49 PIM)

Message Details

Repository file:///E:\ProjectJenkins

Jenkins Continuous Delivery pipeline in action

Now, there have been some changes to the featurel branch. Let's see if Jenkins has
detected it. Follow these steps:

1. Go to the Jenkins dashboard and click on the Continuous Delivery
Pipeline view.
In the menu on the left-hand side, click on the View Fullscreen link.

You will see the following Jenkins jobs in the CD Pipeline:

Feature 1 Feature 1

Build, Unit-Test Build, Unit-Test

aminute ago 50 sec aminute ago 19 sec

Merge Merge
a few seconds ago 1sec

[The proceeding image shows the CD pipeline in progress.]

[392]

Chapter 6

cD #33

Static Code Analysis, Integration-Testing
afew seconds agoe 7 sec
Publish to Artifactory

Deploy to Testing Server
User Acceptance Test

Performance Test

cD #35

Static Code Analysis, Integration-Testing
a few seconds ago 20 sec

Publish to Artifactory
afew seconds ago 1sec

Deploy to Testing Server
a few seconds ago 0sec

User Acceptance Test

Performance Test

cD #35

Static Code Analysis, Integration-Testing
a minute age 20 sec

Publish to Artifactory
a minute age 1sec

Deploy to Testing Server
afew seconds ago 2 sec

User Acceptance Test
afew secondsago 18 sec

Performance Test

afewsecondsago 0sec

cD #33

Static Code Analysis, Integration-Testing
a few seconds ago 23 sec

Publish to Artifactory
afew seconds ago 1sec

IDeploy to Testing Server

User Acceptance Test

I Performance Test

cD #33

Static Code Analysis, Integration-Testing
aminute ago 23 sec

Publish to Artifactory
afew seconds age 3 sec

Deploy to Testing Server
afew seconds age 2 sec

User Acceptance Test
afew seconds ago 8 sec

I Performance Test

cD #35

Static Code Analysis, Integration-Testing
aminute ago 20 sec

Publish to Artifactory
aminute ago 1sec

Deploy to Testing Server

afew seconds agoe 2 sec

User Acceptance Test
afew secondsago 18 sec

Performance Test

The proceeding image shows the CD pipeline in progress.

[393]

Continuous Delivery Using Jenkins

Exploring the job to perform deployment in
the testing server

The following figure gives an overview of the tasks that happen while this particular
Jenkins job runs:

2} Jenkins Job to
: deploy code to Testing Server

Jenking Slave on Testing Server
Trigger

Artifactory Server

Download the respective
package from Artifactory to
1= the webapps folder

Matification

-

Trigger another Jenkins Job + Pass Prameters

@Jenkins Job to perform UAT
.

[394]

Chapter 6

The Continuous Delivery pipeline has worked well. Let's go through the Jenkins job
that performs deployment on the testing server, using the following steps:

1. From the Jenkins dashboard, click on the Deploy_Artifact To_Testing
Server job.

2. On the Build History panel, right-click on any of the builds:

Build History trend =

o #15 Feb 16, 2016 11:34 PM

= Changes

E Console Output

. Edit Build Infarmation

@ Delete Build

@ Delete this build and all configurations in this build

Farameters

[395]

Continuous Delivery Using Jenkins

3. You will see the following build log. This is the log from the Jenkins master
server's perspective:

Q Console Output

Started by upstream project "Upload Package To Artifactory”™ build number 37
originally caused by:

Started by upstream project
"Poll Build StaticCodeAnalysis IntegraticonTest Integration_Branch” build number
4

originally caused by:

Started by user Administrator
Building remotely on Testing Server (Testing) in workspace
Jhome/nikhil/workspace/Deploy_Artifact_To Testing_Server
Triggering Deploy Artifact To Testing Server » default
Deploy Artifact To_Testing Server » default completed with result SUCCESS
Warning: you have no plugins providing access control for builds, so falling back
to legacy behavicr of permitting any downstream builds to be triggered
Mo JDK named ‘“null’ found
Triggering & new build of User_Acceptance Test
Finished: SUCCESS

4. Click on the Deploy_Artifact To_Testing Server » default link.
5. From the Build History panel, right-click on any of the builds:

Build History trend =

Rad
ey
=

Feb 26, 2016 7:09 PM

"'::, Changes

,a Console Output

“ ~ EditBuild Information

@ Delete Build

. Parameters

¢coeeoeOLECECEOCEC

E) RSS for all EY RSS for failures

[396]

Chapter 6

6. You will see the following build log. This is the log from the Jenkins
slave's perspective:

O Console Output

Started by upstream project "Deploy Artifact To Testing Serwer” build number 11
originally caused by:
Started by upstream project “"Upload Package To_Artifactory" build number 37
originally caused by:
Started by upstream project
"Poll Build StaticCodednalysis_IntegrationTest Integration_Branch" build number
40
originally caused by:
Started by user Administrator
Building remotely on Production_Serwer (production)Mo JDK named “null’ found
in workspace /fhome/nikhil/workspace/Deploy_Artifact_To_Testing_Server/default
Mo JDK named “null’ found
[default] $ /bin/sh -x= ftmpjhud;on6298933921952?54?89 sh
+ wget http: 1. if
--2816-82-26 19: 39 34--

Connectlng to 192 158 1.184:8081... connected.
HTTP request sent, awaiting response... 280 OK
Length: 17545816 (17M) [application/java-archive]
Saving to: “payslip-28.8.1.war’

2016-82-26 19:89:34 (41.3 MB/s) - “payslip-8.8.1.war”’ saved [17545816/17545815]

+ mv payslip-8.@.1.war fopt/tomcat/webapps/payslip-@.8.1.war -f
Mo JIDK named ‘null’ found

Mo JDK named ‘null® found

Finished: SUCCESS

[397]

Continuous Delivery Using Jenkins

Exploring the job to perform a user
acceptance test

The following figure gives an overview of the tasks that happen while this particular
Jenkins job runs:

Jenkins Slave on Testing Server

;.Jenkns Job to perform UAT
Download the code

from Git Server

T

T

Git Server

Perform UAT) E

Maven with TestNG
dependency

Publish TestNG
reports

5" Motification

Trigger another Jenkins Job + Pass Prameters

2 Jenkins Job to perform
' Performance Test

-

Let's go through the user acceptance test results. To do so, follow these steps:

1. From the Jenkins dashboard, click on the User_Acceptance_Test job.

2. From the Build History panel, right-click on any of the builds:

[398]

Chapter 6

Build History trend =

@ #5 Feb 16, 2016 11:34 PM

":; Changes
|| console Output

“ ~+ Edit Build Information

@ Delete Build

@ Delete this build and all configurations in this build

. Parameters

0 Git Build Data

] Mo Tags

LE

3. You will see the following build log. This is the log from the Jenkins master
server's perspective:

QConsole Output

Started by upstream project "Deploy Artifact To Testing_ Server"™ build number &
originally caused by:
Started by upstream project "Upload Package To_Artifactory” build number 32
originally caused by:
Started by upstream project
"Poll Build StaticCodeAnalysis IntegrationTest Integration_Branch" build number 35
originally caused by:
Started by an SCM change
Building remotely on Testing_Server (Testing) in workspace
Jfhome/nikhil/workspace/User_Acceptance_Test
Mo IDK named ‘null’ found
No JDK named “null’ found
Fetching changes from the remote Git repository
Checking out Rewvision 19b3d11473e1737f4f832ab@e67f2aalbaldedel (detached)
Mo JDK named “null’ found
First time build. Skipping changelog.
Triggering User_Acceptance_Test » JDK for Nodes
User Acceptance Test » JDK for Wodes completed with result SUCCESS
Warning: you have no plugins providing access control for builds, so falling back to legacy
behavior of permitting any downstream builds to be triggered
No JDK named “null’ found
Triggering a new build of Performance Testing
Finished: SUCCESS

[399]

Continuous Delivery Using Jenkins

4. Click on the User_Acceptance_Test » JDK for Nodes link.

5. You will see the following on the resulting page:

Configuration JDK for Nodes

[
.h TestNG Results

%’ Workspace
A,

I 1
|—z#" Recent Changes
T

Ij Latest Test Result (no failures)

Permalinks

« Last build (#15). 2 days 0 hr ago
« Last stable build (#15). 2 days 0 hr ago
» Last successful build (#15). 2 days 0 hr ago

6. Click on the Latest Test Result link:

TestNG Results

0 failuresii—[]')
1test(+1)

Failed Tests

Mo Test method failed

All Tests (grouped by their packages)
hide/expand the table
Package Duration Fail (diff) Skip (diff) Total (diff)

payslip 00:00:09.038 0 0 0 0 1 0

[400]

Chapter 6

Exploring the job for performance testing

The following figure gives an overview of the tasks that will happen while this

particular Jenkins job runs:
ﬁ.]enkms Job to perform PT

Perform PT

JMeter

Pubhsh Test reports

Let's go through the performance test results. To do so, follow the next few steps:

1. From the Jenkins dashboard, click on the Performance_Test job.

2. From the Build History panel, right-click on any of the builds:

Build History trend =
@ #15 Feb 16, 2016 11:34 PM
== Changes

E Console Qutput

~_» Edit Build Information

@ Delete Build

(&) Delete this build and all configurations in this build

Parametars

[401]

Continuous Delivery Using Jenkins

3. You will see the build log as shown here. This is the log from the Jenkins
master server's perspective:

QConsole Output

Started by user Administrator

Building remotely on Testing Server (Testing) in workspace
Jhome/nikhil/werkspace/Performance_Testing

Triggering Performance Testing » default
Performance_Testing » default completed with result SUCCESS
Finished: SUCCESS

4. Click on the Performance_Testing » default link.

5. On the landing page, from the Build History panel, right-click on any of the
builds. This is shown in the following screenshot:

Build History trend =

Q@ # Feb 16, 2016 11:48 PM

~ -+ Changes
=1 g RSS for failures

E Console Qutput

“ > Edit Build Information

@ Delete Build

[402]

Chapter 6

6. You will see the following build log. This is the log from the Jenkins

slave's perspective:

QConsole Output

Started by upstream project "Performance_Testing” build number 7
originally caused by:
Started by user Administrator
Building remotely on Testing Server (Testing)Mo JDKE named ‘null’ found
in workspace /home/nikhil/workspace/Performance_Testing/default
No J1DK named ‘null’ found
[default] $ /bin/sh -xe /tmp/hudson6461187722122184a71.sh
+ cd fhome/nikhil/Downloads/apache-jmeter-2.13/bin

+ ./jmeter.sh -n -t examples/Payslip_Sample PT.jmx -1 examples/test_report.jtl

Creating summariser <summary>
Created the tree successfully using examples/Payslip Sample PT.Jjmx
Starting the test @ Tue Feb 16 23:48:49 IST 2016 (1455646729464)
Waiting for possible shutdown message on port 4445
summary = 1 in 1s = 1.56/5 Avg: 88 Minm: B8 Max: 88 Err:
Tidying up ... @ Tue Feb 16 23:48:5@ IST 2016 (1455646738190
. end of run
Mo JDK named ‘null’ found

2 (0.00%)

Performance: Percentage of errors greater or egqual than 188% sets the build as unstable
Performance: Percentage of errors greater or equal than 188% sets the build as failure

Performance: Recording JIMeter reports '/home/nikhil/Downloads/apache-jmeter-
2.13/bin/examples/test_report.jtl’

Performance: Parsing JMeter report file
'C:h\Jenkins\jobs\Performance_Testing\configurations\builds\7\performance-
reportshIMeteritest_report.jtl’.

test_report.jtl has an average of: 18@

Performance: File test_report.jtl reported 102.8% of errors [SUCCESS]. Build
SUCCESS

Finished: SUCCESS

status is:

[403]

Continuous Delivery Using Jenkins

7. On the same page, click on the Performance Trend link, the one with the pie
chart and spreadsheet in its logo:

4 Back to Project
L Status

= Changes

B8l console Output

View as plain text
= Edit Build Information

(Y Delete Build

@

8. You will see the following data which is from the test_report.jtl file:

URI = Samples Samples diff Average (ms) Average diff (ms) Median (ms) Median diff (ms) Line90 (ms)

4 0 100 0 96 0 130
All URIs 4 0 100 0 96 0 130
Minimum (ms) Maximum (ms) Http Code Previous Http Code Errors (%) Errors diff (%) Average (KB) Total (KB)
88 130 200 100.0 % 0.0 %
88 130 100.0 % 0.0 % 0.0 0.0

Summary

In this chapter, we saw how to implement Continuous Delivery using Jenkins along
with testing tools such as JMeter, TestNG, and Selenium. We also saw how to create
parameterized Jenkins jobs and configure Jenkins slave agents.

The parameter plugin that comes by default in Jenkins helped our Jenkins jobs pass
important information among themselves, such as the version of code to build and

version of artifact to deploy.

[404]

Chapter 6

To keep things simple, we chose to perform all the testing on a single testing server,
where we also configured our Jenkins slave agent. However, this is not something
that you will see in most organizations. There can be many Jenkins nodes running on
many testing servers, with each testing server dedicated to performing a specific test.

Feel free to experiment yourself by configuring a separate machine for user
acceptance testing and performance testing. Install the Jenkins node agent on both
the machines and modify your Jenkins jobs that perform user acceptance tests and
performance tests to run on their respective testing servers.

[405]

Continuous Deployment
Using Jenkins

This chapter will cover Continuous Deployment and explain the difference between
Continuous Deployment and Continuous Delivery. We will discuss a simple
Continuous Deployment Design and the means to achieve it.

These are the important topics that we will discuss in this chapter:

* The difference between Continuous Deployment and Continuous Delivery
* Who needs Continuous Deployment?

* Continuous Deployment Design

Continuous Deployment is a simple tweaked version of the Continuous Delivery
pipeline. Hence, we won't be seeing any major Jenkins configuration changes or
any new tools.

What is Continuous Deployment?

The process of continuously deploying production-ready features into the
production environment, or to the end-user, is termed Continuous Deployment.
Continuous Deployment in the holistic sense refers to the process of making
production-ready features go live instantly without any intervention. This includes
building features in an agile manner, integrating and testing them continuously, and
deploying them into the production environment without any break. This is what we
are trying to achieve in this chapter.

[407]

Continuous Deployment Using Jenkins

On the other hand, Continuous Deployment in a literal sense means deploying
any given package continuously in any given environment. Therefore, the task of
deploying packages into testing server and production server conveys the literal
meaning of Continues Deployment.

The following figure will help us understand the various terminologies that we
discussed just now. We also saw this in the previous chapter. The various steps a
software code goes through, from its inception to its utilization (development to
production) are listed here. Each step has a tool associated with it, and each one is
part of one or another methodology.

Continuous Deployment

Continuous Delivery

Version Control Gode 0 glt

Continuous Integration

Build Code maven
Unit Test JUnit

Integrate Code 0 glt

Continuous Inspection
e e I Code Quality Analysis ~ sonarqube
Acceptance Testing Build Integrated Code maven
Integration Test o) Unit
Continuous Testing
Version Control Binary Code (package) O JFrog Artifactory
User Acceptance Testing
I User Acceptance Test g
Performance Testing Agac .
l Performance Test J' =
Tag Production ready Package O JFrog Artifactory

Merge Production ready Code .
to Master branch '} git

Deploy Production ready Code in Production Environment

[408]

Chapter 7

How Continuous Deployment is different from
Continuous Delivery

First, the features are developed, then they go through a cycle of Continuous
Integration and later through all kinds of testing. Anything that passes the various
tests are considered production-ready features. These production-ready features
are then labeled in Artifactory (not shown in this book) or are kept separately to
segregate them from non-production-ready features.

This is very similar to the manufacturing production line. The raw product goes
through phases of modifications and testing. Finally, the finished product is
packaged and stored in the warehouses. From the warehouses, depending on
the orders, it gets shipped to various places. The product doesn't get shipped
immediately after it's packaged. We can safely call this practice Continuous
Delivery. The following figure depicts the Continuous Delivery life cycle:

Develop Code
Build Code
Unit Test

Integrate

Continuous Integration ----3
: Static Code Analysis

Build Integrated Code
Integration Test . Continuous Delivery

Publish 1o Artifactory

Deploy to Testing Environment

! User Acceptance Test
Continuous Testing -=--1
: Performance Test

Label Prod ready builds in Artifactory

Deploy to Production Environment -+ Descrete Deployment

[409]

Continuous Deployment Using Jenkins

On the other hand, a Continuous Deployment life cycle looks somewhat as shown
in the next figure. The deployment phase is immediate without any break. The
production-ready features are immediately deployed into the production.

Develop Code
Build Code:
Unit Test

! Integrate
Continuous Integration «--- .
1 Static Code Analysis

Build Integrated Code

Integration Test Continuous Deployment

Publish to Artifactory

Deploy to Testing Environment

: User Acceptance Test
Continuous Testing ----1
: Performance Test

Deploy to Praduction Environment

Who needs Continuous Deployment?
You might be wondering about the following things:
* How to achieve Continuous Deployment in your organization?
* What could be the challenges?
* How much testing do I need to incorporate and automate?
And the list goes on. Technical challenges are one thing. What's more important

is to realize the fact that do we really need it? Do we really need Continuous
Deployment?

[410]

Chapter 7

The answer is, not always and not in every case. From our definition of Continuous
Deployment and our understanding from the previous topic, production-ready
features are deployed instantly into the production environments.

In many organizations, it's the business that decides whether or not to make a feature
live, or when to make a feature live. Therefore, think of Continuous Deployment as
an option and not a compulsion.

On the other hand, Continuous Delivery, which means creating production-ready
features in a continuous way, should be the motto for any organization.

Continuous Deployment is easy to achieve in an organization that has just started;

in other words, organizations that do not own a large amount of code, have small
infrastructures, and have less number of releases per day. On the other hand, it's
difficult for organizations with massive projects to move to Continuous Deployment.
Nevertheless, organizations with large projects should first target Continuous
Integration, then Continuous Delivery, and finally Continuous Deployment.

Frequent downtime of the production
environment with Continuous Deployment

Continuous Deployment, though a necessity in some organizations, may not be a
piece of cake. There are a few practical challenges that may surface while performing
frequent releases to the production server. Let's see some of the hurdles.

Deployment to any application server or a web server requires downtime. The
following activities take place during downtime. I have listed some of the general
tasks; they might vary from project to project:

* Bringing down the services

* Deploying the package

* Bringing up the services

* Performing sanity checks
The Jenkins job that performs the deployment in production server may include all
the aforementioned steps. Nevertheless, running deployments every now and then
on the production server may result in frequent unavailability of the services. The

solution to this problem is using a clustered production environment, as shown in
the next figure.

[411]

Continuous Deployment Using Jenkins

This is a very generic example in which the web server is behind a reverse proxy
server such as NGINX, which also performs load balancing. The web server is a
cluster environment (the web server has many nodes running the same services)
that makes it highly available.

Usually, a clustered web application server will have a master-slave architecture,
where a single node manager controls a few node agents. When a deployment takes
place on the web application server, the changes, the restart activities, and the sanity
checks take place on each node —one at a time. This resolves the downtime issues.

Internet

Reverse Proxy Server

Production Environment

Continuously deploying production ready features

Jenkins Master

L]

Continuous Deployment Server

Continuous Deployment Design

From the previous sections, we know what Continuous Deployment is and how
different it is from Continuous Delivery. It is safe for us to conclude that Continuous
Deployment is not an integral part or an extension of Continuous Delivery, but it is a
slightly twisted version of it.

[412]

Chapter 7

Our Continuous Deployment Design will include all the jobs that were the part of
the Continuous Delivery Design, with the addition of two more Jenkins jobs and a
modification to one of the existing Jenkins jobs. Let's see this in detail.

The Continuous Deployment pipeline

The Continuous Deployment pipeline will include new Jenkins jobs as well as the
existing Jenkins jobs that are part of the Continuous Delivery Design. Our new
design will grow to around seven Jenkins jobs.

From the previous chapters, we are familiar with the following the Continuous
Delivery pipeline:

* Pipeline to poll the feature branch

* Pipeline to poll the integration branch
However, as part of our Continuous Deployment Design, the pipeline to poll the
integration branch will be again modified by reconfiguring one of the existing

Jenkins jobs and adding additional Jenkins jobs. Together, these new Jenkins
pipelines will form our Continuous Delivery pipeline.

Pipeline to poll the feature branch

The Pipeline to poll the feature branch will be kept as it is, and there will be no
modifications to it. This particular Jenkins pipeline is coupled with the feature
branch. Whenever a developer commits something on the feature branch, the
pipeline gets activated. It contains two Jenkins jobs that are as follows.

Jenkins job 1

The first Jenkins job in the pipeline performs the following tasks:

e It polls the feature branch for changes at regular intervals
* It performs a build on the modified code

e [t executes the unit tests

[413]

Continuous Deployment Using Jenkins

Jenkins job 2

The second Jenkins job in the pipeline performs the following task:

* It merges the successfully built and tested code into integration branch

Jenkins Job to merge code on integration branch
]

Feature "X" Branch

Jenkins Pipeling

L J

R,

B TR

Jenkins Job to poll, build and Unit test

Pipeline to poll the integration branch

This Jenkins pipeline is coupled with the integration branch. Whenever there

is a new commit on the integration branch, the pipeline gets activated. However,
it will now contain seven Jenkins jobs (five older and two new) that perform the
following tasks:

Jenkins job 1

The first Jenkins job in the pipeline performs the following tasks:

* It polls the integration branch for changes at regular intervals
* It performs a static code analysis of the downloaded code
* It executes the integration tests

» It passes the GIT_COMMIT variable to the Jenkins job that uploads the package
to Artifactory

[414]

Chapter 7

The GIT COMMIT variable is a Jenkins system variable that contains
the SHA-1 checksum value. Each Git commit has a unique SHA-1
’ checksum. In this way, we can track which code to build.

Jenkins job 2

The second Jenkins job in the pipeline performs the following tasks:

* It uploads the built package to the binary repository

* It passes the GIT cOMMIT and BUILD_ NUMBER variables to the Jenkins job that
deploys the package in the production server

The variable BUILD NUMBER is a Jenkins system variable that contains
the build number. Each Jenkins job has a build number for every run.

* We are particularly interested in the build number corresponding
%‘ to Jenkins job 2. This is because this job uploads the built package to
Artifactory. We might need this successfully uploaded artifact later
during Jenkins job 3 and Jenkins job 7 to deploy the package to the
testing server and production server, respectively.

Jenkins job 3
The third Jenkins job in the pipeline performs the following tasks:
* It deploys the package to the production server using the BUILD NUMBER
variable

* It passes the GIT coMMIT and BUILD_ NUMBER variables to the Jenkins job that
performs user acceptance tests

[415]

Continuous Deployment Using Jenkins

Jenkins job 4

The fourth Jenkins job in the pipeline performs the following tasks:
* It downloads the code from Git using the GIT COMMIT variable
* It performs the user acceptance test
* It generates the test results report

* It passes the GIT_COMMIT and BUILD_NUMBER variables to the Jenkins job that
performs the performance test

Jenkins job 5
The fifth Jenkins job in the pipeline performs the following tasks:
* It performs the performance test

* It passes the GIT_COMMIT and BUILD_ NUMBER variable to the Jenkins job that
performs the performance test (new functionality)

We will create two new Jenkins jobs 6 and 7 with the following functionalities.
Jenkins job 6
The sixth Jenkins job in the pipeline performs the following tasks:

* It merges successfully tested code into the production branch

* It passes the GIT_COMMIT and BUILD_NUMBER variables to the Jenkins job that
performs the performance test

Jenkins job 7
The seventh Jenkins job in the pipeline performs the following task:

* It deploys package to the production server using the BUILD NUMBER
variable:

[416]

Chapter 7

Feature Branch

Jenkins Continuous
Deployment Pipeling

Jenkins Job to poll for changes,
Build and perform Unit test

Jenkins Job to merge changes
to Integration branch

Integration Branch

Jenkins Job to poll for changes,
............. perform static code anlaysis and
Integration testing

Jenkins Job to publish code to
artifactory

Jenkins Job to deploy code to
Testing Server

Jenkins Job to perform User
Acceptance Test

Jenkins Job to perform
Performance Test

Jenkins Job to Merge
code into Master branch

Jenkins Job to deploy code
to Production Server

All the Jenkins jobs should have a notification step that can be
& configured using advanced e-mail notifications.

[417]

Continuous Deployment Using Jenkins

Toolset for Continuous Deployment

The example project for which we are implementing Continuous Delivery is a
Java-based web application; the same one that we used in Chapter 4, Continuous
Integration Using Jenkins — Part 1, Chapter 5, Continuous Integration Using Jenkins — Part
II, and Chapter 6, Continuous Delivery Using Jenkins.

The following table contains the list of tools and technologies involved in everything
that we will see in this chapter:

Tools and Description

technologies

Java The primary programming language used for coding
Maven Build tool

JUnit Unit test and integration test tools
Apache Tomcat | Servlet to host the end product
server

Eclipse IDE for Java development
Jenkins Continuous integration tool

Git Version control system
Artifactory Binary repository

Source Tree Git client

SonarQube Static code analysis tool

JMeter Performance testing tool

TestNG Unit test and Integration test tool
Selenium User acceptance testing tool

The next figure shows how Jenkins fits in as a Continuous Deployment server in
our Continuous Deployment Design, along with the other DevOps tools. We can
understand the following points from the figure:

* The developers have got the Eclipse IDE and Git installed on their machines.
This Eclipse IDE is internally configured with the Git Server. This enables the
developers to clone the feature branch from the Git server on their machines.

* The Git server is connected to the Jenkins master server using the Git plugin.
This enables Jenkins to poll the Git server for changes.

* The Apache Tomcat server, which hosts the Jenkins master, has also got
Maven and JDK installed on it. This enables Jenkins to build the code that
has been checked in on the Git server.

[418]

Chapter 7

Jenkins is also connected to SonarQube server and the Artifactory server
using the SonarQube plugin and the Artifactory plugin, respectively.

This enables Jenkins to perform a static code analysis of the modified code.
Once all the build, quality analysis, and integration testing are successful,
the resultant package is uploaded to the Artifactory for further use.

Consecutively, the package also gets deployed on a testing server that
contains testing tools such as JMeter, TestNG, and Selenium. Jenkins, in
collaboration with the testing tools, will perform a user acceptance test
and a performance test on the code.

Any code that passes the user acceptance test and the performance test gets
deployed in the production server.

Client with Eclipse IDE & Git

(&]

Client with Eclipse IDE & Git I Client with Eclipse IDE & Git
[H—eo—g|
Git Server
SourceTree
Git Plugin
SonarQube Plugin Artifactory Plugin
_— = :
SonarQube Jenking Master Artifactory

Maven JOK

Jenkins Slave Jenkins Slave

Testing Server Production Server

JRE JRE

Selenium JMeter

M Server

* Jenkins Plugin

Application

D Developer's machine

[419]

Continuous Deployment Using Jenkins

Configuring the production server

I chose an Ubuntu machine as our production server. We need to set up some
software on it that will assist us while we implement Continuous Deployment.

The following steps are almost same as discussed in Chapter 6, Continuous Delivery
Using Jenkins, where we configured the testing server. However, we won't need the
testing tools here.

Installing Java on the production server

The production server will have the Apache Tomcat server to host the application.
The tool needs Java Runtime Environment running on the machine. Follow the next
few steps to install Java JRE on the production server:

1. To install Java JRE on the machine, open a Terminal and give the following
commands. This will update all the current application installed on the
production server:

sudo apt-get update

2. Generally, Linux OS comes shipped with Java packages. Therefore,
check whether Java is already installed using the following command:

java -version

3. If the preceding command returns a Java version, make a note of it. However,
if you see the program Java can be found in the following packages, Java
hasn't been installed. Execute the following command to install it:

sudo apt-get install default-jre

[420]

Chapter 7

Installing the Apache Tomcat server on the
production server

Installing the Apache Tomcat server on Ubuntu is simple. We are doing this to host
our application so that it can be tested separately in an isolated environment. The
steps are as follows:

1. Download the latest Apache Tomcat server distribution from http://
tomcat .apache.org/download-80.cgi. Download the tar.gz file.

Apache Tomcat - Apache Tomcat 8 Downloads - Mozilla Firefox

/ Apache Tomcat-Ap... %

& apache.org Elv¢ Search Ww B + @i » | =
Problems? =
8.0.32
Security Reports
Find help . - . .
FAQ Pl_easje se_e the REP_xDME file for packaging information. It explains what every
Malling Lists distribution contains.
Bug Database - — -
IRC Binary Distributions
Get Involved e Core:
Overview © zip (pgp, mds, shal)
SVN Repositories © tar.gz (pgp, mds, shal)
Buildbot © 32-bit Windows zip (pgp, md5, shal)
Reviewboard © 64-bit Windows zip (pgp, md5, sha1)
Tools © 64-bit Itanium Windows zip (pgp, md5, shal)
o 32-bit/64-bit Windows Service Installer (pgp, md5, shatl)
Media « Full documentation:
Blog o tar.gz (pgp, mds, shal)
Twitter * Deployer:
. o zip (pgp, mds, sha)
e o tar.gz (pgp, mds, shat)
Who We Are # Extras:
Heritage o |MX Remote jar (pgp, mds, shal)
Apache Home © Web services jar (pgp, md5, shal)
Resources © JULI adapters jar (pgp, md5, shal)
S o JULl log4] jar (pgp, mds, shat)
—a _ * Embedded:
ot g s shan)
© zip (pgp, mds, shal) -

[421]

http://tomcat.apache.org/download-80.cgi
http://tomcat.apache.org/download-80.cgi

Continuous Deployment Using Jenkins

2. Download it to the folder Downloads.

f Apache Tomcat-Ap... x

€ apache.org El~ | |Q search A O 3+ A » =
Problems? =
: 8.0.32

Security Reports

Find help) . . .

FAQ Please see the README file for packaging information. It explains what every

S distribution contains.

Mailing Lists

Bug Database 0 Opening apache-tomcat-8.0.32.tar.gz

IRC L

You have chosen to open:

Get Involved (& apache-tomcat-8.0.32.tar.qz

gsr;:;:fjsitories which is: Gzip archive (8.7 MB)

suildbot from: http://a.mbbsindia.com

Reviewboard What should Firefox do with this File?

Tools

O openwith | Archive Manager (default) = shal)
Media -
@|save File

Blog

Twitter [Do this automatically For Files like this from now on.
Misc

Who We Are

. Cancel OK

Heritage

Apache Home

iSOl © JULl adapters jar (pgp, md5, shat)

CEE: © JULI log4] Jar (pgp, mds5, shat)

':gal - * Embedded:

ponsorship
o tar.gz (pgp, mds, shal
Thanks)

© Zip (pgp, mds, shat)

3. We're going to install Tomcat to the /opt/tomcat directory. To do so, open a
Terminal in Ubuntu.

4. Create the directory, then extract the archive using the following commands:
sudo mkdir /opt/tomcat
sudo tar xvf apache-tomcat-8*tar.gz -C /opt/tomcat --strip-
components=1

5. Start the Apache Tomcat server by executing the following commands:
sudo su -
cd /opt/tomcat/bin
./startup.sh

[422]

Chapter 7

6. This will provide the following output:

@S @ root@nikhil-virtualBox: fopt/tomcat/bin

root@nikhil-virtualBox: fopt/tomcat/bin# ./startup.sh

Using CATALINA_BASE: Jopt/tomcat

Using CATALINA_HOME: Jopt/tomcat

Using CATALINA_TMPDIR: /fopt/tomcat/temp

Using JRE_HOME: Jusr

Using CLASSPATH: Jopt/tomcat/bin/bootstrap.jar:/opt/tomcat/bin/tomcat-juli
Tomcat started.

root@nikhil-virtualBox: fopt/tomcat/bin# I

7. That's it! The Apache Tomcat server is up and running. To see it
running, open the following link in your favorite web browser:
http://localhost:8080/.

8. We must now create a user account in order to manage the services using
the manager app feature that is available on the Apache Tomcat server's
dashboard. We will do this by editing the tomcat-users.xml file.

9. Todo so, type the following command in the Terminal:

sudo nano /opt/tomcat/conf/tomcat-users.xml

10. Add the following line of code between <tomcat-users> and </tomcat-
userss:

<user username=admin password=password
roles=manager-gui,admin-gui/>

[423]

Continuous Deployment Using Jenkins

11. This is shown in the following screenshot:

P

root@nikhil-VirtualBox: fopt/tomcat/bin
GNU nano 2.2.6 File: J/opt/tomcat/conf/tomcat-users.xml Modified

Wf Get Help @§¥ WriteOut [N Read File @Y Prev Page @{ Cut Text [d8 Cur Pos
W Exit W8 Justify gl Where Is @l Next Page gl UnCut Textlgl To Spell

12. Save and quit the tomcat -users.xml file by pressing Ctrl + X and
then Ctrl + Y.

13. To put our changes into effect, restart the Tomcat server by executing the
following commands:
cd /opt/tomcat/bin
sudo su -
./shutdown.sh

./startup.sh

Jenkins configuration

In order to assist the Jenkins jobs that perform various functions to achieve
Continuous Deployment, we need to make some changes in the Jenkins
configuration. This includes configuring the Jenkins slave agent on the
production server and nothing else.

[424]

Chapter 7

Configuring Jenkins slaves on the production
server

In the previous chapter, we saw how to configure a Jenkins slave on the testing
server. Here, we will see how to configure a Jenkins slave to run on the production
server. In this way, the Jenkins master will be able to communicate and run Jenkins
jobs on the slave. Follow the next few steps to set up Jenkins slaves:

1. Log in to the production server. Open the Jenkins Dashboard from the web
browser using the following link: http://<ip address>:8080/jenkins/.
Remember, you are accessing the Jenkins master from the production server.
Here, <ip addresss> is the IP of your Jenkins server.

2. From the Jenkins Dashboard, click on Manage Jenkins. This will take you
to the Manage Jenkins page. Make sure you have logged in as an admin in
Jenkins.

3. (Click on the Manage Nodes link. In the following screenshot, we can see
that the master node (which is the Jenkins server) along with one slave node
running on the testing server is listed:

4 Back to Dashboard
#.. Manage Jenkins
B New Node

P Configure

Build Queue -

Mo builds in the queue.

Build Executor Status -

B master

1 Idle
2 ldle

= Testing_Server

1 Idle
5 Name | Architecture Clock Difference Free Disk Space Free Swap Space Free Temp Space Response Time
!:: master Windows 10 (amd6d) In sync 289.87 GB 4.54 GB 289.87 GB Oms 7
!E- Testing_Server Linux (amd6d) 1.3 sec ahead 24.31 GB 2.00GB 24.31 GB 3515ms 7
Data obtained 8 min 8 sec 8 min 7 sec 8 min 7 sec 8 min 7 sec 8 min 7 sec 8 min 7 sec

Refresh status

[425]

Continuous Deployment Using Jenkins

4. Click on the New Node button on the left-hand panel. Name the new node
Production_Server and select the option Dumb Slave. Click on the OK
button to proceed.

4 Back to Dashboard Node name | oo oiction_Server
2. Manage Jenkins ® Dumb Slave
B New Node Adds a plain, dumb slave to Jenkins. This is called "dumb" because Jenkins doesn't

provide higher level of integration with these slaves, such as dynamic provisioning.
Select this type if no other slave types apply — for example such as when you are

& Configure adding a physical computer, virtual machines managed outside Jenkins, etc.
VirtualBox Slave
Build Queue = Adds VirtualBox slave.
No builds in the queue. Copy Existing Node

Copy from

Build Executor Status =

= master
1 Idle OK
2 ldle

= Testing_Server
1 ldle

5. Add a description as shown in the screenshot. The Remote root directory
value should be the local user account on the production server. It should be
/home/<user>. The Labels field is extremely important; add production as
the value.

6. The Launch method field should be Launch slave agents via Java Web Start:

[426]

Chapter 7

4 Back to Dashboard
7 Manage Jenkins
B New Node

7 Configure

Build Queue

No builds in the queue

Build Executor Status

1 ldle
2 Idle

MName

Description

of executors

Remote root directory

Labels

Usage

Launch method

Availability

Node Properties

Environment variables

Tool Locations

Production_Server

Jenkins Slave on Production Server|

Utilize this node as much as possible

Launch slave agents via Java Web Start

Tunnel connection through

“

“

® & &8 &8 &8 ®@8 ® &

®

Keep this slave on-ine as much as possible ¥ &)

7. Click on the Save button. As you can see in the following screenshot,

the Jenkins node on the production server has been configured but it's

not running;:

4 Back to Dashboard
& Manage Jenkins
B nNew Node

& Configure

Build Queue

No builds in the queue.

Build Executor Status

= master
1 Idle
2 Idle

= Testing_Server

1 Idle
S Name | Architecture Clock Difference Free Disk Space Free Swap Space Free Temp Space Response Time
1-!; master Windows 10 (amd64) In sync 28987 GB 289.87 GB Oms
% Production_Server NiA N/A N/A NIA
!3 Testing_Server Linux (amd64) 1.3 sec ahead 2431GB 2431 GB 3515ms
Data obtained 8 min 8 sec 8 min 7 sec 8 min 7 sec 8 min 7 sec 8 min 7 sec 8 min 7 sec

¥

7

[427]

Continuous Deployment Using Jenkins

8. (Click on the Production_Server link in the list of nodes. You will see
something like this:

:!é Slave Production_Server (Jenkins Slave on Production Server)

Connect slave to Jenkins one of these ways:

Launch agent from browser on slave

« Run from slave command line:

java -jar slave.jar -jnlpUrl http://192.168.1.181:8888/jenkins/computer/Production_Server/slave-agent.jnlp -secret
18597901d1elecc15edfRe811fe7386ch619991d12b26d8chd57ddbe 4386873

Created by Administrator

Labels

production

Projects tied to Production_Server

Mone

9. You can either click on the Launch button in orange, or execute the long
command mentioned below it in the Terminal.

10. If you choose the latter option, then download the slave.jar file mentioned
in the command by clicking on it. It will be downloaded to /home/<users>/
Downloads/.

11. Execute the following commands in sequence:

cd Downloads

java -jar slave.jar -jnlpUrl

http://192.168.1.101:8080/jenkins/computer/
Production Server/slave-agent.jnlp -secret
916d8164£f7ccclb6£fb4521d0c9523eec3b9933328f4cc9cd5e75b4cd65£139£7

The preceding command is machine specific. Do not

copy and paste and execute it. Execute the command that

appears on your screen.

[428]

Chapter 7

nikhil@nikhil-virtualBox: ~/Downloads
nikhil@nikhil-virtualBox:~/Downloads$ 1s

nikhil@nikhil-virtualBox:~/Downloads$ java -jar slave.jar -jnlpuUrl http://192.16
8.1.103:8080/ jenkins/computer /Production_Server/slave-agent.jnlp -secret 1859790
1dleleccl5edfPe811fe7386cb619991d12b26d8c6d57ddbo4386073

Feb 25, 2016 8:57:57 PM hudson.remoting. jnlp.Main createEngine

INFO: Setting up slave: Production_Server

Feb 25, 2016 8:57:57 PM hudson.remoting.jnlp.Main$CuiListener <init>

INFO: Jenkins agent is running in headless mode.

Feb 25, 2016 8:57:57 PM hudson.remoting.jnlp.Main$CuilListener status

INFO: Locating server among [http://192.168.1.103:8080/jenkins/]

Feb 25, 2016 8:57:57 PM hudson.remoting.jnlp.Main$Cuilistener status

INFO: Handshaking

Feb 25, 2016 8:57:57 PM hudson.remoting.jnlp.Main$CuiListener status

INFO: Connecting to 192.168.1.183:51036

Feb 25, 2016 8:57:57 PM hudson.remoting.jnlp.Main$CuiListener status

INFO: Trying protocol: INLP2-connect

Feb 25, 2016 8:57:57 PM hudson.remoting.jnlp.Main$CuiListener status

INFO: Connected

12. The node on the production server is up and running, as shown in the
following screenshot:

& Back to Dashboard
& Manage Jenkins
E New Node

#. Configure

Build Queue =

Mo builds in the queue

Build Executor Status =

B master

1 Idle
2 ldle

= Testing_Server

1 ldle
S Name | Architecture Clock Difference Free Disk Space Free Swap Space Free Temp Space Response Time
g. master Windows 10 (amd64) In sync 289.87 GB 454 GB 289.87 GB Oms 7
g. Production_Server Linux (amd&4) 1.3 sec ahead 2431 GB 200GB 2431 GB 3515ms 7
g, Testing_Server Linux (amd6d) 1.3 sec ahead 2431 GB 2.00GB 2431 GB 1164ms 7
Data obtained 8 min 8 sec 8 min 7 sec 8 min 7 sec 8 min 7 sec 8 min 7 sec 8 min 7 sec

Refresh status

[429]

Continuous Deployment Using Jenkins

Creating the Jenkins Continuous
Deployment pipeline

This Continuous Deployment pipeline contains seven Jenkins jobs (five old and
two new ones). In this section, we will modify Jenkins job 5 and create two new ones.

Modifying the existing Jenkins job

The modification is pretty simple. We need to add a post build step to an existing
Jenkins job, Performance_Testing. In this way, the Performance Testingjob
will be able to trigger the new Jenkins job, Merge_Production_Ready Code_Into_
Master Branch, that we will be creating in the coming sections.

Modifying the Jenkins job that performs the

performance test
The fifth Jenkins job in the Continuous Deployment pipeline performs the
following tasks:
e It performs the performance test
* It passes the GIT_COMMIT and BUILD_NUMBER variables to the Jenkins job that

performs the performance test (new functionality)

The following figure will help us understand what the Jenkins job does. It's a slightly
modified version of what we saw in the previous chapter.

[430]

Chapter 7

Jenkins Slave on Testing Server

Jenkins Job to perform PT

Perform PT E

JMeter

Publish Test reports

Motification

Trigger another Jenkins Job + Pass Parameters

Follow the next few steps to create it:

1. On the Jenkins Dashboard, click on the Performance_Testing job.

2. Click on the Configure link present on the left-hand panel.

3. Scroll down until you see the Post-build Actions section.

[431]

Continuous Deployment Using Jenkins

4. Click on the Add post-build action button. From the drop-down list, choose
the option Trigger parameterized build on the other projects.

Aggregate downstream test results

Archive the artifacts

Publish Performance test result report
Fublish TestNG Results

Record fingerprints of files to track usage
Git Publisher

SonarQube

E-mail Motification

Editable Email Notification

Trigger parameterized build on other projects

Add post-build action -

5. Add the values as shown here:

Trigger parameterized build on other projects (7]
Build Triggers
Projects to build Merge_Production_Ready_Code_Into_Master_Branch @)
Trigger when build is Stable v @
Trigger build without parameters (2]
Add Parameters -
Add trigger...
Delete

[432]

Chapter 7

6. Click on the Add Parameters button and choose Predefined parameters:

Add Parameters -

Boolean parameters

Build on the same node

Current build parameters

Farameters from properties file
Fass-through Git Committhatwas built
FPredefined parametears

Restrict matrix execution to a subset

Subversion revision

7. Add the values as shown here:

Trigger parameterized build on other projects (7]

Build Triggers

Projects to build Merge_Production_Ready Code_Into_Master Branch @)

Trigger when build is Stable r @

Trigger build without parameters (7]

Predefined parameters

Parameters gy p NUMBER=${BUILD_NUMBER}
GIT_COMMIT=${GIT_COMMIT}

Add Parameters -

Add trigger...

8. Save the Jenkins job by clicking on the Save button.

[433]

Continuous Deployment Using Jenkins

Creating a Jenkins job to merge code from the
integration branch to the production branch

The sixth job in the Continuous Deployment pipeline performs the following tasks:

* It merges successfully tested code into the production branch

* It passes the GIT_COMMIT and BUILD_ NUMBER variables to the Jenkins job that
performs the performance test

Follow the next few steps to create it:

1. On the Jenkins Dashboard, click on New Item.

2. Name your new Jenkins job Merge Production Ready Code Into Master_
Branch.

3. Select the type of job as Freestyle project and click on OK to proceed.

Item name Merge_Production_Ready_Code_Into_Master_Branch

®! Freestyle project

This is the central feature of Jenkins. Jenkins will build your project. combining any SCM
with any build system, and this can be even used for something other than software build.

Maven project

Build a maven project. Jenkins takes advantage of your POM files and drastically
reduces the configuration.

External Job
This type of job allows you to record the execution of a process run outside Jenkins,
even on a remote machine. This is designed so that you can use Jenkins as a dashboard
of your existing automation system. See the documentation for more details.

Multi-configuration project

Suitable for projects that need a large number of different configurations, such as testing
on multiple environments, platform-specific builds, etc.

Copy existing Item
Copy from

OK

[434]

Chapter 7

Scroll down until you see Advanced Project Options. Select Restrict where
this project can be run.

Add master as the value for Label Expression:

¥ Restrict where this project can be run (2]

Label Exprezsion master @

Label is serviced by 1 node

Scroll down to the Build section.

Click on the Add build step button and choose the option Execute shell.

Execute Windows batch command

Execute shell

Invoke Ant

Invake Maven 3

Involke Standalone SonarCube Analysis

Invake top-level Maven targets

SonarQube Scanner for MSBuild - Begin Analysis
SonarCube Scanner for MSBuild - End Analysis

Trigger/call builds on other projects

Add build step ~

Add the following code to the Command field:
E:

cd Projectdenkins

git checkout master

git merge %GIT COMMIT% --stat

[435]

Continuous Deployment Using Jenkins

The Execute Windows batch command window is shown in the
following screenshot:

Build
Execute Windows batch command (7]
Command £
git checkout master

git merge XGIT_COMMITH --stat
“

See the list of available environment varables
Delete

_— L

The first line of code switches the current directory to the E:
drive. The second line of code moves to the Git repository named
* ProjectJenkins. The third line of code checks out the master
%j%‘ branch. The fourth line of code merges the particular Git version
’ on the integration branch that is production-ready to the master
branch. The GIT_COMMIT variable represents the successfully
tested, production-ready code on the integration branch.

9. C(lick on the Add post-build action button again. From the drop-down list,
choose the option Trigger parameterized build on the other projects.

Aggregate downstream test results

Archive the arfifacts

Fublish Performance test result report
Fublish TestNG Results

Record fingerprints of files to track usage
Git Publisher

SonarCube

E-mail Motification

Editable Email Motification

Trigger parameterized build on other projects

Add post-build action -

[436]

Chapter 7

10. Add the values as shown in the next screenshot:

Trigger parameterized build on other projects ®
Build Triggers

Projects to build . : =
Deploy_Artifact_To_Production_Server @)

Trigger when build is Stable v @

Trigger build without parameters ®

Add Parameters ~
Add trigger...
Delete

11. Along with triggering the build, we would also like to pass some
predefined parameters to it. Click on the Add Parameters button and
select Predefined parameters.

Add Parameters -

Boolean parameters

Build on the same node

Current build parameters

FParameters from properties file
Pass-through Git Commit that was built
Fredefined parameters

Restrict matrix execution to a subset

Subversion revision

[437]

Continuous Deployment Using Jenkins

12. Add the values as shown in the next screenshot:

Trigger parameterized build on other projects (7))

Build Triggers

Projects to build Deploy_Artifact_To_Production_Server &)

Trigger when build is Stable)
Trigger build without parameters @

Predefined parameters

Parameters gy p NUMBER=S{BUILD_NUMBER)
GIT_COMMIT=${GIT_COMMIT}

Add Parameters -

Add trigger...

13. Save the Jenkins job by clicking on the Save button.

Creating the Jenkins job to deploy code to the
production server

The seventh job in the Continuous Deployment pipeline performs the following task:
* It deploys package to the production server using the BUILD NUMBER variable
Follow the next few steps to create it:

1. On the Jenkins Dashboard, click on New Item.

2. Name your new Jenkins job Deploy Artifact_To_Production_Server.

[438]

Chapter 7

3. Select the type of job as Multi-configuration project and click on OK
to proceed.

ltem name Dieploy_Artifact_To_Production_Server
Freestyle project
This iz the central feature of Jenkins. Jenkins will build your project, combining any SCM
with any build system, and this can be even used for something other than software build.
Maven project
Build a maven project. Jenkins takes advantage of your POM files and drastically
reduces the configuration.
External Job

This type of job allows you to record the execution of a process run outside Jenkins,
even on a remote machine. This is designed so that you can use Jenkins as a dashboard
of your existing automation system. See the documentation for more details.

'#" Multi-configuration project

Suitable for projects that need a large number of different configurations, such as testing
on multiple envirenments, platform-specific builds, etc.

Copy existing ltem
Copy from

OK

4. Scroll down until you see Advanced Project Options. Select Restrict where
this project can be run.

5. Add production as the value for Label Expression.

Advanced Project Options

¥ Restrict where this project can be run ®

Label Expression production @

Label is serviced by 1 node

6. Scroll down to the Build section.

[439]

Continuous Deployment Using Jenkins

7. Click on the Add build step button and choose the option Execute shell.

Execute Windows batch command

Execute shell

Invoke Ant

Invoke Mawven 3

Invoke Standalone SonarCube Analysis

Invoke top-level Maven targets

SonarQube Scanner for MSEBuild - Begin Analysis
SonarQube Scanner for MSBuild - End Analysis

Trigger/call builds on other projects

Add build step -

8. Add the following code to the Command field:

wget http://192.168.1.101:8081/artifactory/projectjenkins/$BUILD
NUMBER/payslip-0.0.1l.war

mv payslip-0.0.1l.war /opt/tomcat/webapps/payslip-0.0.1l.war -f
9. The Execute shell window is shown in the following screenshot:

Build

Execute shell (2]

Command| ,cot http://192.168.1.101:3081/artifactory/projectienkins/$8UILD_NUMBER /payslip-0.9.1.uar

mv payslip-@.@.1.war /opt/tomcat/webapps/payslip-8.0.1.war -f

See the list of avaiable envionment vanables

Delete
. The first line of the command downloads the respective
% package from Artifactory to the Jenkins workspace, and the
s second line of command deploys the downloaded package to
Apache Tomcat server's webapps directory.

10. Save the Jenkins job by clicking on the Save button.

[440]

Chapter 7

Creating a nice visual flow for the
Continuous Delivery pipeline

The pipeline to perform Continuous Deployment now contains the following
Jenkins jobs:

® Poll Build StaticCodeAnalysis IntegrationTest Integration
Branch

®* Upload Package To Artifactory

®* Deploy Artifact To Testing Server

® User Acceptance Test

®* Performance Testing

® Merge Production Ready Code Into Master Branch

® Deploy Artifact To Production_ Server

In this section, we will modify the Continuous Delivery view that we created in the
previous chapter using the delivery pipeline plugin. The steps are as follows:

1. Go to the Jenkins Dashboard and click on the Continuous Delivery tab,
as shown in the following screenshot:

All
5 w Name |

J Cleaning_Temp_Directory

Deploy_Artifact_To_Production_Server

Deploy_Artifact_To_Testing_Server

Jenkins_Home_Directory_Backup

Xy

Merge_Feature1_Into_Integration_Branch
Merge_Feature?_Into_|ntegration_Branch

Merge_Production_Ready_Code_Into_Master_Branch

Performance_Testing

Poll_Build_StaticCodeAnalysis_IntegrationTest_Integration_Branch

©00G6

Poll Build_UnitTest_Feature! Branch

Poll_Build_UnitTest_Feature? Branch

Upload_Package_To_Artifactory

User_Acceptance Test

XY

[441]

Continuous Deployment Using Jenkins

2. You will see the following page. Click on the Edit View link present on the
left-hand side menu.

= New ltem

& People

“= Build History

A Continuous Delivery

Feature 1 #5
Edit View I Build, Unit-Test
10 days ago 21 5=z
) Delete View
Merge
5 . . . 10 days ago 05z
L Project Relationship Y
&= | Check File Fingerprint
A =t 1]
View Fullscreen Feature 2 NIA
7 Manage Jenkins Build, Unit-Test
4. Credentials
Merge

& My views

3. Now, you will see a lot of options that are already filled. Scroll down until
you see the View settings section.

4. Change the value of Name from Continuous Delivery to Continuous
Deployment.

Name Continuous Deployment

View settings

Mumber of pipeline instances per pipeline 0)
Display aggregated pipeline for each pipeline [« .@.
Mumber of columns ’ v @
Sorting MNone v @
Update interval 1 ®

[442]

Chapter 7

5. Leave the rest of the options at their default values and scroll down until you
see the Pipelines section.

6. You can see in the following screenshot that three components are listed:

Pipelines
Components
Delete
Name (7]
@ Please supply a title!
Initial Job Poll_Build_UnitTest_Feature1_Branch T @
Final Job (optional) Merge _Featurel_Into_Integration_Branch T ®
Delete
MName (7]
@ FPlease supply a title!
Initial Job Poll_Build_UnitTest_Feature2_Branch @
Final Job (optional) Merge_Feature2_Into_Integration_Branch @
Delete
Name (7))

@ Please supply a title!

Initial Job Poll_Build_StaticCodefnalysis_IntegrationTest_Integration_Branch » .@.

Final Job {optional) Deploy_Artifact_To_Production_Server @

Add

Regular Expression Add

7. In the last component, change the Final Job (optional) value from
Performance Testingto Deploy Artifact To Production_ Server.

8. (Click on OK to save the configuration.

Now, come back to the Jenkins Dashboard.

[443]

Continuous Deployment Using Jenkins

10. Right-click on the Merge_Production_Ready_Code_Into_Master_Branch
Jenkins job and select Configure, as shown in the following screenshot:

Merge Production Ready Code_Into_Master Branch

7 Workspace
ysis_IntegrationTest_Integration_Branch

‘.%) Build Now

el_Branch
@ Delete Project

000

e2_Branch
7 Configure

J Upload FPackage lo_Arifactory

11. Look for the Delivery Pipeline configuration option and select it.

12. Under the same, add Stage Name as cD and Task Name as Merge to
Master Branch:

¥ Delivery Pipeline configuration
Stage Name cD @

Task Name Merge to Master Branch ®

13. Save the configuration by clicking on the Save button at the bottom of the
page before moving on.

14. Now, come back to the Jenkins Dashboard.

15. Right-click on the Deploy_Artifact_ To_Production_Server Jenkins job and
select Configure.

16. Look for the Delivery Pipeline configuration option and select it.

17. Here, set Stage Name as cD and Task Name as Deploy to Production
Server.

¢ Delivery Pipeline configuration
Stage Mame cD @

Task Name Deploy to Production Server -i))

[444]

Chapter 7

18. Save the configuration by clicking on the Save button at the bottom of the
page before moving on.

19. Come back to the Jenkins Dashboard and click on the Continuous
Deployment view. Tada!! This is what you will see:

Continuous Deployment

Feature 1 #5
I_Bund Unit-Test

U aays ago 21 se¢

Feature 2 NIA
Build, Unit-Test

Merge

#35

0 T_esting Server

L 580

mo
=
B

Performance Test

Merge to Master Branch

Deploy to Production Server

[445]

Continuous Deployment Using Jenkins

Continuous Deployment in action

To keep things simple, we won't be making any code changes. Instead, we will
simply retrigger our Jenkins job to poll the integration branch, that is, Po11_Build_
StaticCodeAnalysis_IntegrationTest_ Integration Branch, to begin the
Continuous Deployment pipeline. The steps are as follows:

1. From the Jenkins Dashboard, click on the build button for the Poll_Build_
StaticCodeAnalysis_IntegrationTest_Integration_Branch Jenkins job.

2. That's it! The pipeline begins.

All +
S W Name | Last Success Last Failure Last Duration
J Cleaning_Temp_Directory 1hr54 min-#62 N/A 2.1sec LZ)
J Deploy_Arifact To_Production_Server 41 min - #1 MNFA 2.2 sec gi)
J Deploy_Artifact_To_Testing_Server 42 min - £11 N/A 1.1sec Lz)
Q_J Jenkins_Home_Directory_Backup 4 mo 0 days -#5 N/A 10 sec Lz)
t} Merge _Featurel_Into_Integration_Branch 9days 20 hr-#6 N/A 0.87 sec ;2)
‘_". Merge_Feature2_Into_Integration_Branch NFA NFA NA ;z)
J Merge_Production_Ready_Cede_Into_Master_Branch 4 min-#1 N/A 1.3 sec ;z)
J Performance_Testing Sdays 20 hr-47 41 min-#10 3 sec Lz)
J Poll_Build_StaticCodeAnalysis_IntegrationTest_Integration Branch 43 min - £#40 N/ 47 sec LZ)
J Poll_Build_UnitTest Featurel Branch 42 min - #37 MN/A 3.1 sec Lz)
\,,.' Poll_Build_UnitTest Feature2_Branch NIA A NA gz)
d Upload_Package_To_Artifactory 42 min - #37 N/A 3 1sec Lz)
J User_Acceptance_Test 42 min - #19 58 min - #17 16 sec Lz)

Jenkins Continuous Deployment pipeline flow
in action

We have successfully triggers the Jenkins Continuous Deployment pipeline.
Now let's see it in action:
1. Go to the Jenkins Dashboard and click on the Continuous Deployment view.

2. From the menu present on the left-hand side, click on the View
Fullscreen link.

[446]

Chapter 7

3. You will see the Jenkins jobs in the Continuous Deployment pipeline in
action, as shown here:

(1] #36
Static Code Analysis, Integration-Testing
aminute ago 49 sec

Publish to Artifactory

Deploy to Testing Server

User Acceptance Test

Performance Test

Merge to Master Branch

Deploy to Production Server

[+0] #36
Static Code Analysis, Integration-Testing
aminute agoe 58 sec

Publish to Artifactory
a few seconds agoe 4 sec

Deploy to Testing Server
afewsecondsago 2sec
User Acceptance Test

Performance Test

Deploy to Production Server

I Merge to Master Branch

(0] #36
Static Code Analysis, Integration-Testing
2minutes ago 47 sec

Publish to Artifactory
aminute age 3 sec

Deploy to Testing Server
aminute age 1 sec

User Acceptance Test
a minute ago 16 sec

Performance Test
afewsecondsago 0Osec

I Merge to Master Branch

IDeploy to Production Server

cD #36

Static Code Analysis, Integration-Testing
aminute age 58 sec

Publish to Artifactory
afewsecondsago 2sec
Deploy to Testing Server
User Acceptance Test
Performance Test

Merge to Master Branch

Deploy to Production Server

[+] #36
Static Code Analysis, Integration-Testing
aminute age 27 sec

Publish to Artifactory
afewsecondsago 1sec

Deploy to Testing Server
afewsecondsago 1sec

User Accepiance Test
afewsecondsago 6sec

I Performance Test
IMerge to Master Branch

IDepon to Production Server

cD #36
Static Code Analysis, Integration-Testing
2 minutes ago 47 sec

Publish to Artifactory
aminute ago 3 sec

Deploy to Testing Server
aminute ago 1sec

User Acceptance Test
aminuie age 16 sec

Performance Test

Merge to Master Branch
10 minutes ago 1 sec

Deploy to Production Server
10 minutes ago 2 sec

The proceeding image shows the Continuous Delivery (CD) pipeline
in progress.

[447]

Continuous Deployment Using Jenkins

4. Open the source tree and you can see the master, integration, and
featurel branches are all at the same level.

Projectlenkins X

4 File Status All Branches ~ Show Remaote Branches | Date Order
) Warking Copy Graph Description Date Commit
4 Branches PR FET e E 3l created uat test and modified the pom file to have two profiles. 16 Feb 2016 23:27 19b3d11
4 featurel created uat test and modified the pom file to have two profiles, 16 Feb 2016 22:49 9a7d0eb
'c’featurez. changed the variable pay percentage from 10% to 9% 23 Dec 2015 16:41 57e743b
"'i Ezf:t“’” [Feature2 | adding code to repository 4Dec 201521:51 55c96a7

Exploring the Jenkins job to merge code to
the master branch

The Continuous Deployment pipeline has worked well. The following figure shows
an overview of the tasks that happen while this particular Jenkins job runs:

Jenkins Master

: Jenkins Job to merge code
: to Master branch

Merge code from Integration
branch to Master branch

Notification
K Trigger another Jenkins Job + Pass Parameters
Mean while on Ihe Git server

Remote Integration

branch
T:derge }

Remole Masler
branch

Jenkins Job to deploy code
to Production Server

@

Let's go through the Jenkins job:

1. From the Jenkins Dashboard, click on the Project Merge_Production_Ready_
Code_Into_Master_Branch job.

2. From the Build History panel, right-click on any of the builds.

[448]

Chapter 7

Build History trend =

o # Feb 26,2016 7:10 PM

-+ Changes
= ¢ RSS for failures

,! Console Output

“~+ Edit Build Infarmation

@ Delete Build

Parameters

3. You will see the following build log. This is the log from the Jenkins master
server's perspective:

Q Console Output

Started by upstream project "Performance Testing” build number 10
originally caused by:
Started by upstream project "User_Acceptance Test” build number 13
originally caused by:
Started by upstream project "Deploy Artifact To Testing Server” build number 11
originally caused by:
Started by upstream project "Upload Package To Artifactory” build number 37
originally caused by:
Started by upstream project "Poll Build StaticCodeAnalysic IntegrationTest Integration Branch” build number 49
originally caused by:
Started by user Administrator
Building on master in workspace C:\Jenkins\jobs\Merge Production Ready_Code_Into_Master_Branch\workspace
[workspace] 3 emd /c call “"C:\Program Files\Apache Softwars Foundation\Tomcat 8.B\temp\hudson5139362868578688857.bat"

C:\Jenkins'jobs\Merge Production Ready Code Into Master Branchiworkspace>E:
£:\>ed Projectdenkins

£:\Projectlenkinssgit checkout master
Switched to branch 'master’

£:\Projectlenkins>git merge 19b3d11473e1737f47832ab0e67F2aa1baldedel --stat
Updating 55c96a7..19b3d11
Fast-forward

payslip/.classpath 32 HHbRRRRRR
payslip/.gitignore 1+
payslip/.project 42 HHHHE
payslip/.settings/.jsdtscope 13+
payslip/.settings/org.eclipse.jdt.core.prefs 13+
payslip/.settings/org.eclipse.m2e. core.prefs 2 4+
payslip/.settings/org.eclipse.ust. commen. component 9 -+
.../org.eclipse.wst.common.project. facet.core.xml 8 44+t
./org.eclipse.ust.jsdt.ui.superType. container 14+
.../org.eclipse.ust.jsdt.ui.superType. name 1+
payslip/.settings/org.eclipse.ust.validation.prefs | 2 +
.../org.eclipse.ust.ws.service.policy. prefs 2+
payslip/pom.xml 45 R
.../src/main/java/payslip/VariableComponent. java 42 HHEEE oo
payslip/src/main/webapp/index.sp 2 +-
payslip/src/test/java/payslip/Uat.java 25 +HHHHirrH
.../test/java/payslip/VariableComponentTest. java L g T
payslip/testng.xml [Ee—

18 files changed, 243 insertions(+), 38 deletions(-)
create mode 180644 payslip/.classpath

create mode 180644 payslip/.gitignore

create mode 180644 payslip/.project

create mode 180644 payslip/.settings/.jsdtscope

create mode 180644 payslip/.settings/org.eclipse.jdt.
create mode 180644 payslip/.settings/org.eclipse.m2e.

creste mode 180644 payslip/.settings/org.eclipse.ust

create mode 180544 payslip/.settings/org.eclipse.ust.
create mode 180544 payslip/.settings/org.eclipse.ust.
create mode 180544 payslip/.settings/org.eclipse.ust.
create mode 180544 payslip/.settings/org.eclipse.ust.
create mode 180544 payslip/.settings/org.eclipse.ust.
create mode 180544 payslip/src/test/java/payslip/Uat.

creste mode 180844 payslip/testng.xml

£:\Projectlenkinssexit @

core.prefs
core.prefs

.common . component
common. project . facet. core.xml

§sdt.ui.superType.container
3sdt.ui.superType.name
validation.prefs

ws.

service.policy.prefs

java

Warning: you have no plugins providing access control for builds,

so falling back to legacy behavior of permitting any downstream builds to be triggered

Triggering a new build of Deploy Artifsct To_ Production Server

Finished: SUCCESS

[449]

Continuous Deployment Using Jenkins

Exploring the Jenkins job that deploys code
to production

The following figure gives an overview of the tasks that happen while this particular
Jenkins job runs:

Jenkins Slave on Production Server

") Jenkins Job 1o deploy code
to Production Server

Artifactory Server Download the respective
m - ! package from Artifactory to
: B0 the webapps folder
" Motification

Let's go through the deployment steps:

1. On the Jenkins Dashboard, click on the Project Merge_Production_Ready_
Code_Into_Master_Branch job.

2. On the Build History panel, right-click on any of the builds.

Build History trend =

= Changes

ﬁ Console Output

- Edit Build Information

@ Delete Build

@ Delete this build and all configurations in this build

Parameters

[450]

Chapter 7

3. You will see the following build log. This is the log from the Jenkins master
server's perspective.

@ Console OQutput

Started by upstream project "Merge Production_Ready Code_Into Master Branch" build number 1
originally caused by:
Started by upstream project "Performance_Testing" build number 1@
originally caused by:
Started by upstream project "User_Acceptance_Test” build number 19
originally caused by:
Started by upstream project "Deploy Artifact To Testing Server" build number 11
originally caused by:
Started by upstream project “Upload Package_To_Artifactory™ build number 37
originally caused by:
Started by upstream project “Poll_Build_StaticCodeAnalysis_TIntegrationTest Integration_Branch™ build number 48
originally caused by:

Started by user Administrator
Building remotely on Production_Server (production) in workspace /home/nikhil/workspace/Deploy_Artifact_To_Production_Server
Triggering Deploy Artifact Te_Production Server » default
Deploy_Artifact To Producticn_Server » defsult completed with result SUCCESS
Finished: SUCCESS

4. Click on the Deploy_Artifact_To_Production_Server " default link.
On the landing page, go to the Build History panel and right-click on
any of the builds.

Build History trend =

“> Changes
! ¢ RSS for failures
|| Console Output

“~ Edit Build Information

@ Delete Build

Parameters

[451]

Continuous Deployment Using Jenkins

5. You will see the following build log. This is the log from the Jenkins slave's
perspective.

Q Console Output

Started by upstream project "Deploy Artifact To_Production_Server" build number 1
originally caused by:
Started by upstream project "Merge Production_Ready Code_Into_Master Branch" build number 1
originally caused by:
Started by upstream project "Performance_Testing" build number 1@
originally caused by:
Started by upstream project "User_Acceptance_Test" build number 19
originally caused by:
Started by upstream project "Deploy Artifact_To_Testing Server” build number 11
originally caused by:
Started by upstream project “"Upload_Package To_Artifactory"™ build number 37
originally caused by:
Started by upstream project "Poll Build_StaticCodeAnslysis_TntegrationTest TIntegration_Branch” build number 48
originally caused by:
Started by user Administrator
Building remotely on Testing Server (Testing)Mo JDK named ‘null® found
in workspace /home/nikhil/workspace/Deploy_artifact_To_Production_Server/default
No 1DK named “null’ found
[default] $ /bin/sh -xe /tmp/hudson9205@98568888895173.5h
+ wget http://192.168.1.184:8081/artifactory/projectjenkins/37/payslip-8.8.1.war
--2016-82-26 19:1@:29-- http://192.168.1.104:8081/artifactory/projectjenkins/37/payslip-0.8.1.war
Connecting to 192.168.1.124:8081... connected.
HTTP request sent, awaiting response... 288 0K
Length: 17545816 (17M) [application/java-archive]
Saving to: ‘payslip-@.@.l.war’
2016-82-26 19:10:3@ (31.7 MB/s) - “payslip-@.8.1.war’ saved [17545816/17545016]

+ mv payslip-@.@.1.war /fopt/tomcat/webapps/payslip-@.@.1.war -f
Finished: SUCCESS

6. Login to the production server and open http://localhost:8080/
payslip-0.0.1/ from your favorite web browser.

Alternatively, open the link http://<ip address>:8080/payslip-0.0.1/
from any machine. Here, <ip addresss is the IP address of the production
server.

[452]

Chapter 7

PAY SLIP - Mozilla Firefox

PAY SLIP

€ localhost v C w Ba + i 8 =

PAY SLIP OCTOBER 2015

Salary Components Monthly
[Basic Pay [14438.0
[HRA [5775.0
‘Conveyance Allowance |800.D
[Medical Allowance [1250.0
[LTA (Leave Travel Allowance)[1805.0
[Special Allowance [15450.0
[Total Fixed Pay [39518.0
[Variable Pay [3951.8
[Gratuity [694.1346153846154
[Income Tax [3556.62
[Net Salary [39219.04538461538

Summary

This marks the end of Continuous Deployment. In this chapter, we saw how to
achieve Continuous Deployment using Jenkins. We also discussed the difference
between Continuous Delivery and Continuous Deployment. There were no major
setups and configurations in this chapter, as all the necessary things were achieved
in the previous chapters while implementing Continuous Integration and
Continuous Delivery.

In the next chapter, we will see some of the best practices of Jenkins. We will also
see the distributed build architecture that is used to balance the load on the Jenkins
master server.

[453]

Jenkins Best Practices

This chapter is all about Jenkins best practices. We will begin the chapter with
the distributed builds, where we will see how to harness the Jenkins master-slave
architecture to achieve load balancing while performing builds.

We will also see how to version control Jenkins system configuration and job
configuration, along with auditing Jenkins. This will give us more control over
Jenkins in the event of system failures.

Next, we will see how to connect Jenkins with communication tools to send
notifications. This will give us an edge over the older e-mail-based notification system.

Lastly, we will discuss some other best practices related to Jenkins jobs and Jenkins
updates. If some of you are not happy with the Jenkins GUI, there is section at the
end to install Jenkins themes.

These are the important topics that we will cover in this chapter:

* Creating a build farm using Jenkins slaves

* Installing and configuring a jobConfigHistory plugin to version control
Jenkins configurations

* Installing and configuring the Audit Trail plugin to audit Jenkins
* Installing and configuring HipChat

* Configuring HipChat with Jenkins to send notifications

* Configuring Jenkins to automatically clean up the job workspace

¢ Installing Jenkins themes using the Simple Theme Plugin

[455]

Jenkins Best Practices

Distributed builds using Jenkins

In the previous chapters, we saw how to configure Jenkins on node machines.
These node machines act as Jenkins slaves. So far, we have configured Jenkins on
two nodes, one for testing the code (the testing server) and the other to host the live
application (the production server). However, we used the Jenkins master server to
perform all our Jenkins builds.

Executing builds on the Jenkins master server may seem to be fine as long as you
have sufficient hardware configuration for the Jenkins master server. Nevertheless,
imagine a situation where the number of builds per day increases from single digit
to multiple digits. What would happen to the Jenkins master server?

* The builds may execute slowly, one after the other, since everything is
happening on a single machine, which is the Jenkins master server

* Total build time may increase due to CPU load, assuming we do not
upgrade the Jenkins master server

* We may face disk space issues. As the number of builds per day increase,
the size occupied by build logs and artifacts also increase exponentially

The preceding case becomes a reality if we use a single Jenkins master machine to
perform all the builds. This is where distributed build architecture comes to the rescue.

In the distributed build architecture, we configure Jenkins slaves on multiple node
machines. The Jenkins jobs remain in the Jenkins master machine, but the build
execution takes place on any one of the ideal Jenkins slaves:

® @
L

Jenkins Master Jenkins Slave 1

@

Jenkins Job =
Jenkins Slave 2
@
=
Jenkins Slave 3
@
=
Jenkins Slave 4
@ Busy
@ Free

[456]

Chapter 8

Configuring multiple build machines using
Jenkins nodes

We will first configure Jenkins slaves on the node machines by following these steps.
Later, we will modify the existing Jenkins job to harness the power of these slaves by
performing builds on them:

1. Login to the identified node machine. Open the Jenkins dashboard from
the web browser using the link http://<ip address>:8080/jenkins/.
Remember, you are accessing the Jenkins master from the node machine.
The <ip addresss is the IP of your Jenkins server.

2. From the Jenkins dashboard, click on Manage Jenkins. This will take you
to the Manage Jenkins page. Make sure you have logged in as an admin
in Jenkins.

3. Click on the Manage Nodes link. From the following screenshot, we can
see that the master node (which is the Jenkins server along with one slave

node) running on the testing server and one running on the production
server are listed:

4% Back to Dashboard
7 Manage Jenkins
B New Node

Configure

Build Queue =

Mo builds in the queue.

Build Executor Status =

= master

1 ldle
2 Idle

& Testing_Server

1 Idle
S Name | Architecture Clock Difference Free Disk Space Free Swap Space Free Temp Space Response Time
!.:f_ master Windows 10 (amdB4) In sync 28987 GB 454 GB 289 87 GB Oms 7
!cf Production_Server Linux (amd64} 1.3 sec ahead 2431 GB 2.00 GB 2431 GB 35156ms
g{ Testing_Server Linux (amd6d) 1.3 sec ahead 2431 GB 2.00 GB 2431 GB 1164ms 7
Data obtained 8 min 8 sec 8 min 7 sec 8 min 7 sec & min 7 sec 8 min 7 sec 8 min 7 sec

Refresh status

[457]

Jenkins Best Practices

4. Click on the New Node button from the left-hand side panel. Name the new

node Build Agent 1 and select the option Dumb Slave. Click on the OK
button to proceed:

4 Back to Dashboard Node name ' g g Agent 1

7 Manage Jenkins % Dumb Slave

B New Node Adds a plain, dumb slave to Jenkins. This is called "dumb" because Jenkins doesn't
= provide higher level of integration with these slaves, such as dynamic provisioning.
P Configure Select this type if no other slave types apply — for example such as when you are

adding a physical computer, virtual machines managed outside Jenkins, etc.

VirtualBox Slave

Build Queue = Adds VirtualBox slave.
No builds in the queue. Copy Existing Node
Copy from

Build Executor Status =

= master
1 Idle OK
2 ldle

=, Testing_Server
1 Idle

5. Add some description as shown in the next screenshot. The Remote root
directory value should be the local user account on the production server.
It should be /home/<users. The Labels field is extremely important; add
build agent as the value.

[458]

Chapter 8

6. The Launch method should be Launch slave agents via Java Web Start.

4 Back to Dashboard Name Build Agent 1 2)
Manage Jenkins -~
d Description Build Agent for to build code and perform unit test ®
B New Node
of executors 1 @
7 Configure
Remote root directory Thome!nikhil 2)
Build Queue =
Labels .
Mo builds in the queue. build_agent (2}
Usage Only build jobs with label restrictions matching this node ¥ @)
Build Executor Status =
1 Idle Launch method Launch slave agents via Java Web Start v @
2 lIdle
Tunnel connection through ®
JVM options ®
Availability Keep this slave on-line as much as possible v @

Node Properties

Environment variables

Tool Locations

[459]

Jenkins Best Practices

7. Click on the Save button. As you can see from the following screenshot, the
Jenkins slave on the node agent has been configured but it's not yet running;:

4 Back to Dashboard
#- Manage Jenkins
B nNew Node

7 Configure

Build Queue -

Mo builds in the queue.

Build Executor Status =

= master

1 Idle
2 Idle

B Testing_Server

1 Idle
S Name | Architecture Clock Difference Free Disk Space Free Swap Space Free Temp Space Response Time
% Build Agent 1 NIA N/A /A N/A @ Time out for last 5 try 7
g:n master Windows 10 (amd64) In sync 289.87 GB 454 GB 289.87 GB Oms 4'
g:; Production_Server Linux (amdB4) 1.3 sec ahead 2431 GB 200 GB 2431GB 3515ms 4'
Testing_Server Linux (amd64) 1.3 sec ahead 2431 GB 2.00 GB 2431 GB 1164ms 4'
Data obtained 8 min 8 sec 8 min 7 sec 8 min 7 sec 8 min 7 sec 8 min 7 sec 8 min 7 sec

Refresh status

[460]

Chapter 8

8. Click on the Build Agent 1 link from the list of nodes. You will see something
like this:

:!ﬂ Slave Build Agent 1 (Build Agent to build code and perform unit test)

Connect slave to Jenkins one of these ways:

Launch agent from browser on slave

« Run from slave command line:

java -jar slave.jar -jnlpUrl http://192.168.1.184:8088/jenkins/computer/Build%28Agent®2al/slave-agent. jnlp -secret
592394be5288322fe7bcle@7c4eTobadE329764a47 30a240TheTbadd47e1784a

Created by Administrator
Labels
build_agent

Projects tied to Build Agent 1

MNone

9. Either you can click on the Launch button in orange or you can execute the
following long command from the terminal.

10. If you choose the latter option, then download the slave.jar file mentioned
in the command by clicking on it. It will download the file to /home/<users>/
Downloads/.

11. Execute the following commands in sequence:

cd Downloads

java -jar slave.jar -jnlpUrl http://192.168.1.104:8080/
jenkins/computer/Build%20Agent%201/slave-agent.jnlp -secret
59ea94be5288322fe7bcle07c4ef6b9d8329764a4730a240fb6£fb0dd47el1784a

[461]

Jenkins Best Practices

* The preceding command is machine specific. Do

not copy-paste and execute the same. Execute the
v

command that appears on your screen.

@ S @ nikhil@nikhil-virtualBox: ~/Downloads

nikhil@nikhil-virtualBox:~/Downloads$ java -jar slave.jar -jnlpuUrl http://192.16
8.1.100:8080/jenkins/computer/Build%20Agent%201/slave-agent.jnlp -secret cdbbeso|

c8f17a7381531050ab46bd89fec162653f5balb13cc8724c1cc027043

Mar 20, 2016 12:28:55 PM hudson.remoting. jnlp.Main createEngine

INFO: Setting up slave: Build Agent 1

Mar 20, 2016 12:28:55 PM hudson.remoting. jnlp.MainSCuiListener
INFO: Jenkins agent is running in headless mode.

Mar 20, 2016 12:28:55 PM hudson.remoting. jnlp.MainSCuiListener

<init>

status

INFO: Locating server among [http://192.168.1.104:8080/jenkins/, http://192.168.

1.100:8080/jenkins/]

Mar 20, 2016 12:29:01 PM hudson.remoting.jnlp.MainSCuilListener
INFO: Handshaking

Mar 20, 2016 12:29:01 PM hudson.remoting.jnlp.MainSCuilListener
INFO: Connecting to 192.168.1.100:51672

Mar 20, 2016 12:29:01 PM hudson.remoting.jnlp.MainSCuilListener
INFO: Trying protocol: INLP2-connect

Mar 20, 2016 12:29:01 PM hudson.remoting.jnlp.MainSCuilListener
INFO: Connected

12. The node on Build Agent 1 is up and running;:

@ Back to Dashboard
2 Manage Jenkins
B nNew Node

7 Configure

Build Queue =

No builds in the queue

Build Executor Status =

= master

1 ldle
2 ldle

= Testing_Server

status

status

status

status

1 Idle
S Name | Architecture Clock Difference Free Disk Space Free Swap Space Free Temp Space Response Time
!:f Build Agent 1 Linux (amd64) In sync 2431 GB 2.000GB 2431 GB 101ms
; master Windows 10 (amd64) In sync 289.87 GB 454 GB 289.87 GB Oms
!-f. Production_Server Linux (amdG4) 1.3 sec ahead 2431 GB 2.00 GB 2431 GB 3515ms
!:{ Testing_Server Linux (amdG4) 1.3 sec ahead 2431 GB 2.00 GB 24.31GB 1164ms
Data obtained 8 min 8 sec 8 min 7 sec 8 min 7 sec 8 min 7 sec 8 min 7 sec 8 min 7 sec

Refresh status

L /- /O §

[462]

Chapter 8

13. Identify another spare machine and configure a Jenkins slave onitin a
similar fashion and name it Build Agent 2. However, while configuring
this new build agent, label it as build_agent.

14. Finally, everything should look like this:

4% Back to Dashboard
.. Manage Jenkins
B New Node

7 Configure

Build Queue =

Mo builds in the queue.

Build Executor Status =

= master

1 ldle
2 Idle

= Testing_Server

1 Idle
S Name | Architecture Clock Difference Free Disk Space Free Swap Space Free Temp Space Response Time
‘!'5‘. Build Agent 1 Linux (amd64) In sync 289.87 GB 454 GB 289.87 GB Oms 7
’!':!. Build Agent 2 Linux (amd6d) In syne 2431 GB 2.00 GB 2431 GB 101ms .
‘!‘:“. master Windows 10 (amdB4) In sync 289.87 GB 454 GB 289.87 GB Oms 7
’!‘!. Production_Server Linux {amd64) 1.3 sec ahead 24.31 GB 2.00 GB 2431 GB 3515ms 7
!':f. Testing_Server Linux {amd64) 1.3 sec ahead 2431 GB 2.00 GB 2431 GB 1164ms 7
Data obtained 8 min 8 sec 8 min 7 sec 8 min 7 sec & min 7 sec 8 min 7 sec 8 min 7 sec

Refresh status

a You can configure as many build agents as required. Nevertheless,
/~— keep the label same across all build agents.

Modifying the Jenkins job

Let's experiment with the Jenkins job to Pol1_Build_UnitTest_ Featurel Branch:

1. From the Jenkins dashboard right click on Po11_Build UnitTest_
Featurel Branch Job.

[463]

Jenkins Best Practices

2. Click on the Configure link from the menu:

Poll_Build_UnitTest_Feature1_Branch

= Changes
22_Branch
hr._ Warkspace
ctory

{) Build Now

® Delete Project

©00©

lcom: SML
P Configure

€) Javadoc

EJ GitPolling Log

3. Scroll down until you see the JDK section.
4. Click on the drop-down menu and choose the option JDK for Nodes:

JOK

(System) v
| (System) |
JOK 1.8 ®
?
5. Things should look like this:
Execute concurrent builds if necessary (7]
JoK JDK for Nodes v

JDK to be used for this project

Restrict where this project can be run (7]

6. Under the JDK option, you will see the setting Restrict where this project
can be run. Right now, it's configured to run on the master:

¥ Restrict where this project can be run '@'

Label Expression master (7))

Label is serviced by 1 node

7. Change the value of the Label Expression field from master to build_agent.

[464]

Chapter 8

8. Asyou can see, the moment you add the label, a notification appears saying
Label is serviced by 2 nodes. This is because we have configured two node
machines with the label build_agent:

¥ Restrict where this project can be run (7]
Label Expression build_agent ®

Label is serviced by 2 nodes

9. C(lick on the link Label.

10. You will see the following page. The label build_agent is mapped to the
nodes Build Agent 1 and Build Agent 2:

Administrator | log out

Jenkins build_agent

4% Back to Dashboard
Overview

#. Configure

€2 Load Statistics

=

build_agent
#add description
Nodes
=l Build Agent 2 ® Build Agent 1
Projects
S W Name | Last Success Last Failure Last Duration
’a_) Poll_Build_UnitTest Feature1_Branch 1mo 2 days - #5 N/A 21 sec ;.i)
lcon: SML

Legend [y RSS forall EJ RSS forfailures) RSS for just latest builds

11. Scroll down to the Source Code Management section.

[465]

Jenkins Best Practices

12. Here's the current configuration:

Source Code Management

None
Ccvs
CVS Projectset
* Git
Repositories - _
Repository URL lelProjectJenkins @
Credentials Cnone- v o Add
.@.
Advanced...
Add Repository Delete Repository
Branches to build i#i "y’ =
Branch Specifier (blank for "any’) “feature ®@
Add Branch Delete Branch
Git executable Default Version Control Sytem M
Repository browser (Auta) Y@

13. Modify the Repository URL. It can be a GitHub repository or a repository on
a Git server. In our case, it's git://<ip address>/ProjectJenkins/, where
<ip address> is the Jenkins server IP:

Source Code Management

MNone
Ccvs
CVS Projectset
* Git
Repositories [T _
P Repository URL i1 11195 168 1_104/ProjectJenkins/ @
®
Credentials Chone- v ol
Advanced...
Add Repository Delete Repository
Branches to build i ST _
Branch Specifier (blank for any’) “ffeature @
Add Branch Delete Branch
Git executable igi v
Repository browser (Auto) o)

[466]

Chapter 8

14. Leave the Poll SCM option at its default value:

4 Poll SCM (7)]
Schedule 5 = x
(7]
“
Ignore post-commit hooks ®

15. Scroll down to the Build section. The current configuration looks like this:

Build
Invoke top-level Maven targets ®
Maven Version Maven 3.3.9 v
Goals clean
verify
-Dtest=VariableComponentTest
DskiplTe=true
javadoc:javadoc -
Psit
£
POM payslip/porm.xml [3)]
Properties
@
i
JVM Options v ®
Use private Maven repository (7))
Setings file Use default maven settings T @
Global Settings file Use default maven global settings T @
Delete

[467]

Jenkins Best Practices

16. Modify the Maven Version from Maven 3.3.9 to Maven for Nodes from the
drop-down menu, as shown in the following screenshot:

Build
Invoke top-level Maven targets ®
Maven Version Maven for Nodes v
Goals clean
verify
-Dtest=VariableComponentTest
-Dskipl Ts=true
javadoc:javadoc -
-Psit
i
FOM payslip/pam xml ®
Properties
®
%
JVM Options | v ®
Use private Maven repository ®
Setings file Use default maven settings v @
Global Settings file Use default maven global settings v @
Delete

17. Leave the Post-build Action and the rest of the configuration at their
default values:

[468]

Chapter 8

Post-build Actions

Publish JUnit test result report ®©

Test report XMLs payslip/target/surefire-reports/* xml

Retain long standard output/error (7]

Health report amplification factor 10 ®

Publish Javadoc

Javadoc directory payslip/target/site/apidocs

Directory relative to the root of the workspace, such as ‘myproject’build/javadoc

Retain Javadoc for each successful build (7]

18. Save the Jenkins job by clicking on the Save button.

Running a build

To run a build, perform the following steps:

1. From the Jenkins dashboard, right click on the Po11_Build_UnitTest_

Featurel Branch job.

2. Click on the Build Now link from the menu:

@- Poll_Build_UnitTest_Feature1_Branch

»:..: Changes
: 22_Branch

@ .

g IE o.r space ctory
e) @ Build Now

@ =

® Delete Project

lcon: SML
7 Configure

0 Javadoc

L:] Git Polling Log

[469]

Jenkins Best Practices

3. Once the build is running, click on the job link from the dashboard.

4. The build must have been completed by now. On the job page, under the
Build History section, right-click on the build and select Console Output
from the menu. This is shown in the following screenshot:

Build History trend =

Mar 20, 2016 1:23 PM

=+ Changes

E Console Output

© © © ¢

= Edit Build Information

\9 Delete Build RSS for failures

|_-] Polling Log
Q} Git Build Data
a No Tags

|__.] Test Result

5. Once you get to the logs, you will notice that the build is running on
Build Agent 1:

Jenkins Poll_Build_UnitTest_Feature1_Branch #6

4 Back fo Project (J:. Console 0utp ut

. Status
....... ch . Started by an SCM change

= hanges Building remotely on Build Agent 1 (build_agent)
kspace/Poll_Build_UnitTest_Featurel_Branch
sitory

in workspace /home/nikhil

E&l| Console Output

= Cloning the remote Git re
remote: Counting objects
remote: Compressing objects

= Edit Build Information

o Rec ng objects
Delete Build Resolving deltas
) Updating referenc
Polling Log Checking out Re on 12b3d11473e1737f47832aboea7f2aalbaldedel (refs/remotes/origin/featurel)

First time build. Skipping changelog.
Git Build Data

No Tags

COeD@

Test Result

¢4 Previous Build

6. Ideally, the Jenkins job randomly chooses from the list of available node
agents with the label build_agent.

[470]

Chapter 8

Version control Jenkins configuration

In the first few chapters, we saw how to take Jenkins backup. We did this in two
ways — either by creating a Jenkins job that regularly takes Jenkins backup of the
whole Jenkins folder, or by using the Jenkins backup and restore plugin.

This in itself is a version control, as we are saving the whole Jenkins configurations at
a desired point of time and at regular intervals, or whenever we do a major Jenkins
configuration. However, this is not the best way to record every miniscule change in
the Jenkins configuration separately.

Nevertheless, Jenkins backup is the best way to restore Jenkins during a catastrophic
event where the whole server goes haywire.

Let's see how to version control Jenkins configuration using a plugin.

Using the jobConfigHistory plugin
This plugin saves a copy of the configuration file of a job (config.xml) for every

change made and of the system configuration.

It is also possible to get a side-by-side view of the differences between two
configurations and to restore an old version of a job's configuration. However,
this option is available only for jobs and not for Jenkins system changes.

1. From the Jenkins dashboard, click on Manage Jenkins. This will take you to
the Manage Jenkins page.
Click on the Manage Plugins link and go to the Available tab.
Type jobConfigHistory in the search box.
Select Job Configuration History Plugin from the list and click on the Install

without restart button:
Filter: | 4, jobConfigHistory

Available

Install | Name Version

Job Configuration History Plugin
] 213

Install without restart Download now and install after restart

[471]

Jenkins Best Practices

5. The download and installation of the plugin starts automatically:

Installing Plugins/Upgrades

Preparation
» Checking internet connectivity
* Checking update center connectivity
» Success

Job Configuration History Plugin & Success

E‘:‘:’ Go back to the top page
{you can start using the installed plugins right away)

B> Restart Jenkins when installation is complete and no jobs are running

Go to the Configure System link from the Manage Jenkins page.

Scroll down until you see the Job Config History section:

Job Config History
Use different history directory than default: ®

Advanced...

Click on the Advanced... button.

The default directory for storing history information is JENKINS_HOME/
config-history. If you want to use a different location, you can enter its
path in the Use different history directory than default field.

10. Either an absolute or a relative path may be specified. If a relative path
is entered, it will be created below JENKINS HOME. If an absolute path is
entered, the value will be used directly.

11. Enter the maximum number of history entries to keep in the Max number of
history entries to keep field. Leave it blank to keep all entries.

12. Enter the maximum number of days that history entries should be kept in
the Max number of days to keep history entries field. Leave it blank to
keep all entries:

[472]

Chapter 8

Job Config History

Use different history directory than default:

Max number of history entries to keep

Max number of days to keep history entries

Max number of history entries to show per page

System configuration exclude file pattern

Do not save duplicate history
Save Maven module configuration changes

Show build badges

queue!. xml|nodeMonitors\. xml|UpdateCenter\. xml|global-build-stats

rd

Never

® Always
Only for users with cenfiguration permission
Only for administrators

13. Save the configuration by clicking on the Save button.

Warning!

If this path gets changed, existing history files will not be
found by the plugin any longer. If you still want to have

them listed, you must move them manually to the new root

history folder.

Let's make some changes
Now that we have configured the jobConfigHistory plugin. Let's make some changes

to see how it works:

1. From the Jenkins dashboard, right-click on any of the Jenkins jobs and click

on Configure:

9

Poll_Build_UnitTest_Feature! Branch

_» Changes

Wy Workspace
{) Build Now
@ Delete Project
& Configure

0 Javadoc

[7] sitpoling Log

@{,' Job Config History

[473]

Jenkins Best Practices

2. Scroll to the Description section and add some text, or make any
modification you want:

Project name Poll_Build_UnitTest_Feature1_Branch

Description

[Plain text] Preview

3. Save the Jenkins job by clicking on the Save button.
4. From the Jenkins job page, click on the Job Config History link:

= New Item

&} People

= Build History

L, Project Relationship
&= Check File Fingerprint
p Manage Jenkins

4. Credentials

& My views

@?/ Job Config History

5. We can already see some changes listed. However, this is the Jenkins global
configuration change:

[474]

Chapter 8

4 Back to Dashboard

| @) Show system configs only
| @l Show job configs only

| @) Show created jobs only

| &) Show deleted jobs only

| | show all configs

System Configuration History

Show system configs only
Show job configs enly
Show created jobs only
Show deleted jobs only
Show all configs

Date t System configuration

2016-03-21_18-36-55 jobConfigHistory (system)

Operation

Changed

admin

File
View as XML [RAW)

6. Click on the Show job configs only link to see changes made to the

Jenkins jobs.

7. You will be taken to the following page, where you will be able to see the
Jenkins jobs that have been modified:

4 Back to Dashboard

dl Show system configs only
&l Show job configs only
l_Ji Show created jobs only
l_Ji Show deleted jobs only

\J Show all configs

Job Configuration History

Show system configs only
Show job configs only
Show created jobs only
Show deleted jobs only
Show all configs
Date + Job configuration

2016-03-21_18-53-19 Poll_Build_UnitTest_Feature1_Branch

Operation

Changed

User

admin

File

View as XML (RAW)

[475]

Jenkins Best Practices

8. Click on the Jenkins job link and you will see the changes made to it. So far,
we have only one change:

Job Configuration History

Poll_Build_UnitTest_Feature1_Branch

Date t Operation User Show File Restore old config File A File B
2016-03-21_18-563-19 Changed admin View as XML (RAW) C

Later in this chapter, we will add more configurations to Jenkins. The preceding list
will build up and some new features will come up.

Auditing in Jenkins
In the previous section, we saw how to use the jobConfigHistory plugin to record

and version control changes made to Jenkins.

In this section, we cover how to audit Jenkins using the Audit Trail plugin.

Using the Audit Trail plugin
Perform the following steps to audit Jenkins using the Audit Trail plugin:
1. From the Jenkins dashboard, click on Manage Jenkins. This will take you to
the Manage Jenkins page.
Click on the Manage Plugins link and go to the Available tab.
Type audit-trail in the search box.

Select the Audit trail from the list and click on the Install without
restart button:

[476]

Chapter 8

4 Back to Dashboard
#~ Manage Jenkins

5 Update Center

Filter: | ., audit-trail

Updates Available nstalled Advanced
Install | Name

Audit Trail
Keep a log of who performed particular Jenkins operations, such as configuring jobs.

Install without restart Download now and install after restart

5. The download and installation of the plugin starts automatically:

Installing Plugins/Upgrades

Preparation
« Checking internet connectivity

+ Checking update center connectivity
» Success

Job Configuration History Plugin 0 Success

Audit Trail 0 Success

> Go back to the top page
(you can start using the installed plugins right away)

&> Restart Jenkins when installation is complete and no jobs are running

6. Go to the Configure System link from the Manage Jenkins page.

Version

22

[477]

Jenkins Best Practices

7. Scroll down until you see the Audit Trail section, as shown in the
following screenshot:

Audit Trail

Loggers Add Logger ~

URL Pattems to Log (7 configSubmit|doDelete|postBuilc

Log how each build is triggered 4

8. Click on the Add logger button and select Log file from the options. In this
way, we will save all the audit logs to a log file:

Audit Trail
Loggers
Add Logger
Console
Log file

Syslog server

9. The moment you select the Log file option, a few settings appear.

10. Add the Log Location as shown in the next screenshot. %g is the date
time stamp.

11. If a log file grows beyond the specified limit configured in the Log File Size
MB field, then a new log file is created. The number of log files to keep can be
configured using the Log File Count field:

Audit Trail
Loggers
Log file
Log Lecation . . _
C:\Jenkins%g.log ©
Log File Size MB 70 .ij;.
Log File Count 12 @

Add Logger

[478]

Chapter 8

12. Save the configuration by clicking on the Save Button.

13. Navigate to the location where the log files get created. In our case, it's
C:\Jenkins.

14. You can see a file named Jenkinso:

| [} = | Local Disk (C:)

Home Share View

“~ v P s » ThisPC » Local Disk (C:) »
5 Quick access Mame - Date modified Type Size

& OneDrive Jenkins 21-03-2016 21:07 File folder

Jenkins_Backup 09-02-2016 19:14 File folder

4 This PC Jenkins_Backup2 09-02-20161%:14 File folder

I Desktop PerfLogs 3 File folder

|=| Documents Program Files 19-02- File folder

* Downloads Program Files (x36) 0 File folder

J’ Music Users 17-01-2016 21:23 File folder

= Pictures Windows File folder

) Windows.cld File folder
B videos [Jenkins.log.0 0 File 1KB
= LI [Jenkins.log.0.1 1 File 0KE
= Mew Volume (Dv) \=| Jenkins0 Text Document 1KB
- Mew Volume (E:) || JenkinsD.lag.1 2 1File 0KB
. New Volume () [] JenkinsD.log.1.Ick 21-03-2016 LCK File 0KE
| | JenkinsD.log.Ick 21-03-2016 21:07 LCK File OKB

15. Open it to view the content.

16. We can see some data inside it. The user admin has performed a
/configSubmit operation:

| JenkinsD - Notepad - O x
File Edit Format Wiew Help
Har‘ 21, 2016 9:07:50,976 PM /configSubmit by admin

[479]

Jenkins Best Practices

Notifications

Notification forms an important part of the Continuous Integration and Continuous
Delivery process. Breaking tasks into multiple Jenkins jobs and having e-mail
notifications for each is the best way to act quickly.

We have already seen e-mail notifications in the previous chapters. However, from
the past few years, defect tracking tools and team collaboration tools are gaining
momentum, for example, Asana, Slack, Trello, and HipChat.

In this section, let's see how to configure Jenkins with HipChat to get
continuous notifications.

Installing HipChat

Perform the following steps to install HipChat:

1. From the Atlassian HipChat website, create a new account:

Atlassian

&HipChat

Create your account

Nikhil Pathania

nikhilpathania@hotmail.com

HipChat Server.

2. If your organization already has a team, you may click on the Join an
existing team button.

[480]

Chapter 8

3. If that is not the case, then click on the Create a new team button:

Atlassian

Q@HipChat

What would you like to do?

Join an existing team

4. Provide a name for your team:

Atlassian

QMHipChat

Give your team a name

Company or team name

trekpik _hipchat.com

By clicking you agree to the Customer Agreement and Privacy Policy

Join an existing team instead

[481]

Jenkins Best Practices

5. Skip this step if you don't want to invite people:

Atlassian

QHipChat

New chat

QHipChat

© Trekpik

ROOMS

+ Create a room

PEOPLE

+ Invite your team

Invite some teammates

Try inviting someone you work with

Invite your team

)

=

Trekpik

or Tweets: hitps:/fwitter.com o
fHipChat/status
f461675235469557760

Twitter

Connect via text, voice, or
@ video. Group chat teams love.
Learn more: hitps:/iit.co

M5YIPVOhy
— Atlassian HipChat (@HipChat) via
Twitter Ads

HipChat - &:18 Pm

It's pretty lonely in here. Why
don't you invite a teammate to
help you give HipChat a try? Invite
someone

Weilcome! Send this link to coworkers wh...

{!- Configure integrations

[482]

Chapter 8

Creating a room or discussion forum

Perform the following steps to create a room or discussion forum:

1. Click on the Create a room link.
2. Give your room a meaningful name and select a topic name.

3. You also have the option to make the room public or private. Choose
appropriately.

4. Click on the Create room button when done:

Create a new room

Room name: | continuous delivery

Name your room after your team, project, or anything really.
TOpiC. feature 1 release

Access: Open room
Anyone can join this room and invite others.
® Private room

Only people invited to this room may join.

[483]

Jenkins Best Practices

5. Next, you will be asked to invite people. You can skip this as we can do this
later. If you want to invite people, click on the Invite people button:

Invite people to continuous delivery

These people:

Message:

Invite people el

6. Your newly created room will be listed on the left-hand side bar:

@ HlpChat New chat Invite your team

© Trekpik continuous delivery « = ..
feature 1 release

ROOMS -

) Trekpik

-
a
© confinuous delivery e

+ Create a room

= Files
PEOPLE
& Links
+ Invite your team
WELCOME TO THE CONTINUQUS
DELIVERY ROOM!
This window is kinda empty, huh? It fills up fast
when you
start chatting with your friends. Happy chatting! -
0 @ | £ Configure integrations

[484]

Chapter 8

Integrating HipChat with Jenkins

To integrate HipChat with Jenkins, perform the following steps:

1. From the HipChat dashboard, click on the settings button.

2. Click on the Integrations... link, as shown in the following screenshot:

@HlpChat Newchat Invite your team

© Tickpik confinuous delivery & =2
feature 1 release

ROOMS Room Notifications

) Trekpik

Invite Users. ..

© continuous delivery Remove Users

+ Create a room Enable Guest Access..

* Disable Guest Access...
PEOPLE

_ Archive
+ Invite your team

Change Topic
WELCOME TO THE CONTINUOUS

DELIVERYY ROOM! Change Privacy

Delete
This window is kinda empty, huh? It fills up fast

when you
start chatting with your friends. Happy chatting!

Rename

(U © | €% Configure integrations

[485]

Jenkins Best Practices

3. Click on the Install new integrations link:

Integrations

+ Install new integrations

Active 1 installed

&£ Bitbucket for HipChat o]

4. You will end up on a page with a long list of tools with which you can
integrate HipChat. Search for Jenkins by scrolling down the list.

5. Once you find Jenkins, click on the link:

W intercom @ Jenkins
—

Get notified of your team's Intercom Send Jenkins build notifications to
inbox activity in your HipChat room HipChat rooms

- Librato logely | oggly
Get Librato alerts and snapshots in Send Logaly alerts directly to HipChat
your HipChat room rooms

[486]

Chapter 8

6. This is what you will see. Click on the Add integration button:

@HipChat T Trekpik Myaccount Groupadmin Integrations

Integrations / continuous deliveryy L= Integrations powered by HipChat Connect Try it
I Jenkins out

continuous deliveryy -

Jenkins

Send Jenkins build notifications to HipChat rooms

7. You will see the following notification. Click on OK:

Global integration

This is a Global integration and will be installed for the entire HipChat group!

m Cancel

[487]

Jenkins Best Practices

8. Click on the Approve button to proceed:

Add Jenkins

Jenkins will be given limited access to your HipChat room and will be able to perform the
following on your behaif:

« Send Notification - Send room notifications

9. You will land up on the next page. This is an important step.

10. Under the Configure tab, you will see a token key. It can be regenerated by
clicking on the refresh button right beside it.

11. Copy it and make a note of it. We will need it later while configuring Jenkins:

Integrations / Global (all rooms) / Jenkins X0 Integrations powered by HipChat Connect Try it out

Global (all rooms)

Jenkins Remove

Send Jenkins build notifications to HipChat rooms

Overview Configure

LCLG N5 7024832eac5a17a1656520e0212c4 o

INSTALLATION INSTRUCTIONS

o Install the plugin documented here

° To enable notifications add "HipChat Notifications"” as a post-build step

[488]

Chapter 8

Installing the HipChat plugin

Now come to your Jenkins server and follow these steps:

1. From the Jenkins dashboard, click on Manage Jenkins. This will take you to
the Manage Jenkins page:

Click on the Manage Plugins link and go to the Available tab.
Type hipchat in the search box.

Select the HipChat Plugin from the list and click on the Install without
restart button:

Warning!
/ This plugin requires dependent plugins that are built
% for Jenkins 1.642.1 or above. The dependent plugins
may or may not work in your Jenkins, and consequently
this plugin may or may not work in your Jenkins.

4 Back to Dashboard

P Manage Jenkins

Filter: | © hipchat|
Available
Install | Name Version
HipChat Plugin
A B . o 1.0.0
A Build status publisher that notifies channels on a HipChat server

Install without restart Download now and install after restart

[489]

Jenkins Best Practices

5. The download and installation of the plugin starts automatically. You can
see the HipChat Plugin has some dependencies that get downloaded
and installed:

Installing Plugins/Upgrades

Preparation
» Checking internet connectivity

» Checking update center connectivity
* Success

Pipeline: Step API i) Success

HipChat Plugin i Success

D Go back to the top page
(you can start using the installed plugins right away)

B> Restart Jenkins when installation is complete and no jobs are running

6. Go to the Configure System link from the Manage Jenkins page.
7. Scroll down until you see the Global HipChat Notifier Settings section:

Global HipChat Notifier Settings

HipChat Server api.hipchat.com @
Use v2 AP (2)
API Token ®
Room ®
Send As Jenkins (2}
Default notifications Notify Text

Room Format Notification Type Color Message template

Add

Test configuration

8. Add the key that we copied earlier into the API Token field.

[490]

Chapter 8

9. Add the room name that we created earlier from the HipChat dashboard:

Global HipChat Notifier Settings

HipChat Server api. hipchat.com (2]
Use v2 API ©
API Token 57024832eac5a17a1656920e02f2cd @
Room continuous deliveryy ©
Send As Jenkins (2]
Default nofifications Notify Text Notification Type Color Message template
Room Format
Add
Test configuration
10. Click on the Add button to add a few notifications:
Global HipChat Notifier Settings
HipChat Server api.hipchat.com (7))
Use vZ API (7))
AP Token 57024832eac5a17a16569202022¢4 @
Room continuous deliveryy @
Send As Jenkins ®
Default notifications Notify Text . .
Rgc:2 Fgrmat Notification Type Color Message template
¢ ¢ Build started v yellow ¥
= = Build succes: ¥ green ¥ @
< ¥ Buildfaled v red v
Add

Test configuration

[491]

Jenkins Best Practices

11. Click on the Test configuration button to test the connection.
12. This is what you will see on your HipChat dashboard:

QHipChat Newchat invite your team Search history
S
Trekpik continuous deliveryy & =
feature 1 release
ROOMS
Trekpik Tuesday March 22, 2016 People
O continuous deliveryy -
P Test Notification 3
Files
PEOPLE
Links
+ Invite your team
o © | £ Configure integrations

13. Now HipChat and Jenkins are connected.

Configuring a Jenkins job to send
notifications using HipChat

For configuring a Jenkins job to send notifications using HipChat, perform the
following steps:

1. From the Jenkins dashboard, right-click on any of the Jenkins jobs that you
want to configure to send notifications using HipChat and select Configure.

2. On the Jenkins job's configuration page, scroll down to the Post-build
Actions section.

[492]

Chapter 8

3. Click on the Add post-build action button and select HipChat Notifications:

Post-build Actions

Aggregate downstream test results
Archive the artifacts

Build other projects

Publish Performance test result report
Publish TestNG Results

Record fingerprints of files to track usage
Git Publisher

SonarQube

E-mail Notification

Editable Email Nofification

HipChat Motifications

Trigger parameterized build on other projects

Add post-build action

4. You will see the same configuration as you saw earlier. The only difference
is that those were global configurations and these are specific to the current
Jenkins job.

Add the key that we configured earlier under the Auth Token field.
Add the room name that we created earlier under the Project Room field.
Click on the Add button to add few notifications.

[493]

Jenkins Best Practices

8. Leave the Message Templates as it is:

HipChat Notifications

@
AuthToken 57934832¢ac5a17a1656920e02f2¢4 @
Praject Room continuous deliveryy ®
Notifications Notify Text Notification T Col M . Lat
Room Format Notification Type olor essage template

= = Build started v yellow v Delete

)) Build successful ¥ green v Delete @

- - Build failed v ored v Delete

Add

Message Templates

Job started

Default: '5JOB_NAME #5BUILD_NUMBER $STATUS (JCHANGES_OR_CAUSE) (0pen)

Job completed

Default: '5JOB_NAME #5BUILD_NUMBER $STATUS after SDURATION {Open)'

9. Save the Jenkins job by clicking on the Save button.

10. After saving the configurations, you will land on the next page.
11. Click on the Job Config History link:

[494]

Chapter 8

4 Back to Dashboard
0, status

“~ Changes

h Workspace

£) Build Now

(9 Delete Project

& Configure

0 Javadoc

[7] st Poling Log
@Yg_’ Job Config History

Build History trend =

@ #6 Mar 20, 2016 1:23 PM

9 #5 Feb 16,2016 11:28 FM

o #4 Feb 16, 2016 11:07 PM

o #2 Dec23, 2015 4:58 PM
[E) RSS for all () RSS for failures .

@ Javadoc
% Workspace
i

| =% Recent Changes
S—

m Latest Test Result (no failures)

Downstream Projects

) Merge_Featurel_Into_Integration_Branch

Permalinks

Last build (#6). 2 days 8 hr ago

Last stable build (#6). 2 days 8 hr ago
Last successful build (#6). 2 days 8 hr ago
Last completed build (#6). 2 days 8 hr ago

Project Poll_Build_UnitTest_Feature1_Branch

This Jenkins Job will poll Feature1 branch for changes and perform Unit Test.
If success, it will trigger the "Merge_Feature1_Into_Integration_Branch” Jenkins Job.

12. The changes made to the Jenkins job are listed, as shown in the

following screenshot:

Job Configuration History

Poll_Build_UnitTest_Feature1_Branch

Date + Operation User Show File Restore old config
2016-03-22_21-46-58 Changed admin View as XML (RAW)
2016-03-21_18-53-19 Changed admin View as XML (RAW) <]

File A FileB

L]
-

13. You can also compare the changes by clicking on the Show Diffs button.

[495]

Jenkins Best Practices

14. Here's what you will see:

Job Configuration Difference

Older Change

Date: 2016-03-21_18-53-19
Operation: Changed

User: Administrator

Newer Change
Date: 2016-03-22_21-46-58
Operation: Changed

Restore this configuration [ReeeieCElEICIES

66 <javadocDir»payslip/target/site/apidocs</javadocDir> 66
67 <keepAllrfalse</keepAll: 67
68 </hudson.tasks.JavadocArchiver> 68

R 65
I 70
e 71
R 72
R 73
R 74
I 75
I 76
R 77
R 76
R 79

gaEgas

Running a build

<javadocDir>payslip/target/site/apidocs</javadocDir>
<keepAllrfalsed/keepAlls

</hudson. tasks.JavadocArchivers

<jenkins.plugins.hipchat.HipChatNotifier plugin="hipchat@l.e.@">

<token>57024832eac5al7al656920e021 2c4</ tokens
<room>continuous deliveryy</room>
<notifications>
<jenkins.plugins.hipchat.model.NotificatienConfigs>
<notifyEnabled>true</notifyEnabled>
<textFormat>true</textFormat>
<notificationType>STARTED</notificationType>
<color>YELLOW</color>
< Template></ geTemplate>
</jenkins.plugins.hipchat.model.NotificationConfig>
<jenkins.plugins.hipchat.model.NotificationConfig>
<notifyEnabled>true</notifyEnabled>
<textFormat»true</textFormat>
<notificationType>SUCCESS</notificationType>
<color>GREEN</color>

Let's run a build to check whether the notification is working:

1. From the Jenkins dashboard, right-click on the Jenkins job that was
configured to send HipChat notifications and click on Build Now:

Poll_Build_UnitTest Feature1 Branch

= Changes

22 Branch

K Configure
@ Javadoc

D Git Polling Log

[496]

Restore this configuration

Chapter 8

2. Once the build gets completed successfully, the notifications are immediately
received on the HipChat dashboard, as shown in the following screenshot:

@HiFChat New chat Invite your team Search history

continuous deliveryy

Trekpik =
feature 1 release
ROOMS -
Jenkins b |
. eople
Trekpik Poll_Build_UnitTest_Feature1_Branch #11 P

tin Build started (Started by user Administrator) 9
© continuous deiiveryy (<a href="http://192.168.1.100:8080/jenkins
+ Create a room job/Poll_Build_UnitTest_Feature1_Branch

M1/"=0pen) Files
PEOPLE Jenkins
Links
+ Invite your team Poll_Build_UnitTest_Feature1_Branch #11

Build successful after 3 min 27 sec (<a
href="http://192.168.1.100:8080/jenkins/job
/Poll_Build_UnitTest_Feature1_Branch/11
I">Open)

9 | 4# Configure integrations

Best practices for Jenkins jobs

Using Distributed builds, version controlling the Jenkins configuration,
implementing auditing of Jenkins and all the Jenkins configurations, features and
plugins that we have seen in the current book were implemented in the best possible
way. However, there are few critical things that were not discussed so far and need
our attention. Let's see them one by one.

Avoiding scheduling all jobs to start at the
same time

Multiple Jenkins jobs triggered at the same time may choke your Jenkins. To avoid
this, avoid scheduling all jobs to start at the same time.

To produce even load on the system, use the symbol H. For example, using 0 0 *
* * for a dozen daily jobs will cause a large bottleneck at midnight. Instead, using
H H * * x would still execute each job once a day, but not all at the same time.

[497]

Jenkins Best Practices

The H symbol can be used with a range. For example, H H(0-7) * * * means
sometime between 12:00 A.M. (midnight) to 7:59 A.M. You can also use step
intervals with H, with or without ranges:

4 Poll 5CM ®

Schedule HiG***+

Here's the syntax for the Schedule field: <Minute><Hour><Date of
month><Month><Day of week>

Minute: Minutes within the hour (0-59)

Hour: The hour of the day (0-23)

Date of month: The day of the month (1-31)

Month: The month (1-12)

Day of week: The day of the week (0-7) where 0 and 7 are Sunday

Use # to add comments.

Examples

The examples to avoid scheduling all jobs at the same time are:

Every 15 minutes (perhaps at :07, :22, :37, :52):
H/15 * * * *

Every 10 minutes in the first half of every hour (three times, perhaps at :04,
:14, and :24):

H(0-29)/10 * * * x

Once every 2 hours every weekday (perhaps at 10:38 AM, 12:38 PM, 2:38 PM,
and 4:38 PM):

H 9-16/2 * * 1-5
Once a day on the 1st and 15th of every month, except December:

HHI1,15 1-11 *

[498]

Chapter 8

Dividing a task across multiple Jenkins jobs

The Jenkins Continuous Integration pipeline and the Jenkins Continuous Delivery
pipeline contain multiple tasks. We are familiar with them from the previous
chapters. However, you might have noticed that throughout the examples discussed
in the book, most of the Jenkins jobs were a collection of individual tasks that could
have been separate.

For example, consider the Jenkins job Po11_Build StaticCodeAnalysis_
IntegrationTest Integration_ Branch.

The aforementioned Jenkins job polls the Integration branch for changes and
downloads them. It performs static code analysis on the downloaded code, builds it,
and performs an integration test, followed by a notification. All this happens in the
job's workspace, as shown in the following screenshot:

Poll_Build_StaticCodeAnalysis_IntegrationTest_Integration_Branch

E Poll Integration branch for changes
E Static Code Analysis
- m Build and Integration Test
Job workspace
E Notification

It is good to have the preceding configuration to keep things simple. However,
dividing the tasks across multiple Jenkins jobs is a better option in many ways:

» First, it is easy for any new team member to grasp the Continuous Integration
or Continuous Delivery design.

* Second, in case of failure, it is easy to narrow down to the error zone and
debug the failure.

* Third, the notifications become more specific. For example, in the case of a
single Jenkins job performing multiple operations, the notifications are at
the end. In case of failure, you have to look for the logs and find the step
at which the job has failed — whether it's the static code analysis or the
integration test and so on.

[499]

Jenkins Best Practices

The scenario is completely different if we divide the task across multiple Jenkins
jobs. Every step has a notification, as shown in the following figure:

Common Workspace

ﬂ Pall 1 branch for ch

Static_Code_Analysis

)
ﬂ Static Code Analysis
ﬂ Notification

E Motification

There is a problem: multiple Jenkins jobs will have their individual workspaces.
However, the code on which all the preceding tasks need to be performed is a single
change of code. So, having a common workspace for all the different Jenkins jobs

is a must:

1. To achieve this, right-click on a Jenkins job from the Jenkins dashboard and

select Configure.

2. Scroll down until you see Advanced Project Options:

Advanced Project Options

Advanced...

3. Click on the Advanced... button.

[500]

Chapter 8

4. Select the Use custom workspace option, as shown in the
following screenshot:

Advanced Project Options

Quiet period

Retry Count

Block build when upstream project is building

Block build when downstream project is building

@906

¥ Use custom workspace

Directory

@ Custom workspace is empty.

Display Name

5. Add the value $JENKINS HOME\CommonWorkspace\:

$JENKINS_HOME is the environment variable that holds the Jenkins home path.
CommonWorkspace is a workspace folder that will serve as a common place.

Advanced Project Options

Quiet period

®®oe6®

Retry Count

Block build when upstream project is building

Block build when downstream project is building

¥ Use custom workspace

Directory SJENKINS_HOME\CommonWorkspacel

Display Name)

You need to perform this configuration in all the Jenkins jobs
= that will share this common workspace.

[501]

Jenkins Best Practices

Choosing stable Jenkins releases

The Jenkins software frequently gets updated with new features and fixes.
Usually, this happens weekly. There are a huge number of contributors, and a
Jenkins community that constantly works to fix the issues faced by the millions
of users worldwide.

However, it's not recommended that you update your Jenkins Continuous Integration
server every week. They are not like Windows updates. The weekly Jenkins releases
are not stable. Hence, they should not be treated like Windows updates.

Update Jenkins when you think you need to. For example, a recent Jenkins release
contains a fix for the issue that has been lingering in your Jenkins setup. In such a
scenario, you should update your Jenkins to the respective release with the fix.

Alternatively, you can always update Jenkins to a new stable release. These releases
are called Long Term Support (LTS) releases. They happen every 3 months. A
particularly stable release is chosen, a branch is created from it, and the new branch
is rigorously tested.

Here's the preview from the Jenkins website. By clicking on the Download Jenkins
button on the Jenkins website, we get the option to choose between LTS release and
Weekly release.

Jenkins | Downloads -

LTS Release Weekly Release

LTS (Long-Term Support) releases are A new release is produced weekly to deliver
chosen every 12 weeks from the stream of bug fixes and features to users and plugin
regular releases as the stable release for developers.
that time period

016423 war ~

Changelog | Past Releases

Changelog | Past Releases

Download Jenkins

Get 1.642.3 LTS .war or the latest 1.654 weekly release

[502]

Chapter 8

This is the page where you end up after clicking on the Past Releases link under the
LTS Release section:

« C' [mirrors.jenkins-ci.org/war-stable/

== Apps

Index of /war-stable

Name Last modified Size Description
é Parent Directory -
(0314091 06-Jun-2011 21:01 -
C314092 13-Sep-2011 1223 -
(C314093 08-Nov-2011 15:10 -
314241 30-Nov-2011 16:05 -
Cyl4242 10-Jan-2012 18:40 -
C314243 27-Feb-2012 14:58 -

This is where you land on clicking on the Changelog link under the LTS
release section:

&« C' | & https://jenkins.io/changelog-stable/

i Apps For quick access, place your book ks here on the book ks bar. Import bookmarks now...

Jenkins Downloads ~ Blog Do

Legend: emajor enhancement e« enhancement e major bug fix e bug fix Tweet
Upcoming changes Community ratings

What's new in 1.642.3 (2016/03/16)

o Fields on the parameters page are no longer aligned at the bottom. (issue 31753)

Under some conditions a build record could be loaded twice, leading to erratic
behavior. (issue 22767)

[503]

Jenkins Best Practices

The same is the case with plugins. Usually, plugins get updated whenever its creator
does so. However, it's ideal to refrain from updating plugins as long as things are
running smoothly in your team. Always check plugin wiki pages for a changelog. In
the update center, click the link for the plugin name. This will take you to the wiki
page, as shown in the following screenshot:

EA PMD Plugin - Jenkins - Je X

€« C' & https://wikijenkins-ci.org/display/JENKINS/PMD+Plugin

Dashboard » Jenkins > ... » Plugins » PMD Plugin

PMD Plugin

&2 Added by Ulli Hafner, last edited by Ulli Hafner on Feb 27, 2016 (view change)

Jenkins
Home Plugin Information
Mailing lists Plugin ID pmd Changes In Latest Release

Source code Since Latest Release

Bugtracker Latest Release 3.44 (archives) Source Code GitHub

Security Advisories Lates? Release Date Fe_b 27, 2016 Issue Tracking Open Issues
Required Core 1.596.1 Pull Requests Pull Requests

Events Dependencies analysis-core (version:1.75) Maintainer(s) Ulli Hafner {id: drulli)

Donation maven-plugin (version:2.9)

Commercial Support matrix-project (version:1.2.1)

token-macro (version:1.10, optional)

Wiki Site Map dashboard-view (version:2.9.4, optional)

Documents Usage pmd - installations Installations 2015-Apr 11503
Meet Jenkins [2015 May 11260
! | 2015-Jun 11593
Use Jenkins 10000 T | 2015-Jul 11760
Extend Jenkins 8000 2015-Aug 11631
‘ 2015-Sep 11634
Plugins 8000 ———— 2015-Oct 11638
Servlet Container Notes 4000 | | | | | 2015-Mov 11645
2015-Dec 11500

2000 T S T | 2016-Jan 11605

R 2016-Feb 10150

04 05 06 07 08 09 10 11 12 01 02 03 2016-Mar 10197

Menth O

ChangelLog
You can support the development of this open source plug-ins by buying my Android game [nca Trails in Google Play!
Release 3 44

« Don't alter SAX environment variable anymore (JENKINS-27548)
« Fixed resolving of files with relative paths in workspace (JENKINS-32150)

[504]

Chapter 8

Cleaning up the job workspace

Jenkins jobs generate mammoth logs and artefacts inside the workspace. This is
usually the case with a job that polls and builds the code. A Continuous Delivery
solution that uses the distributed build architecture is also prone to space issues after
a certain period of time.

However, there is one proactive step that can prove helpful to permanently eradicate
the fear of bumping into the disk space issue. It is a very simple configuration that is
available inside every Jenkins job. It's called Discard Old Builds:

Ideally, Jenkins stores all the build logs, unless you manage them using
L= the Discard Old Builds option or some other measures.

Let's see how to use the Discard Old Builds option. This configuration can be done
right at the beginning of creating a new Jenkins job:

1. From the Jenkins dashboard, right-click on any of the Jenkins jobs you want

and select Configure:
J Poll_Build_UnitTest Featurel_Branch
. Changes
i 22_Branch
L Workspace
| QJ ctory
- i-i) Build Now

Qg Delete Project

lcon: SML

7 Configure

) Javadoc

D Git Polling Log

2. Once inside the Jenkins job configuration page, scroll down until you see
Discard Old Builds:

Discard Old Builds (7]

[505]

Jenkins Best Practices

3. Once you select the option, a whole new set of fields appear, as shown in the
next screenshot:

° Days to keep builds: Using this option, you can tell Jenkins as to
how long a build record is stored

° Max # of builds to keep: Using this option, you can tell Jenkins how
many builds to keep

The same applies to artefacts inside the workspace:

¥ Discard Old Builds (7]
Strategy Log Rotation v
Days to keep builds 30
Max # of builds to keep 10
Days to keep artifacts 10

Max # of builds to keep with artifacts 10

Using the Keep this build forever option

If you want to keep a particular build for future references, then you can use the
Keep this build forever option. To do so, follow these steps:
1. From the Jenkins dashboard, click on the required Jenkins job.

2. From the Build History section on the Jenkins job page, click on the build that
you would like to preserve. This will take you to the respective build page:

[506]

Chapter 8

Build History trend =
o #11 Mar 23, 2016 8:19 PM
9 #6 Mar 20, 2016 1:23 PM
< #5 Feb 16, 2016 11:28 PM
g #4 Feb 16, 2016 11:.07 PM
o #2 Dec 23, 2015 458 PM

) RSS for all £ RSS for failures

3. On the build page, you will find a button named Keep this build forever at
the top-right corner of the screen, as shown in the following screenshot:

() Build #11 (Mar 23, 2016 8:19:09

Started 1 mo 4 days ago
PM) Took 3 min 27 sec on Build Agent 1

[#add description
|=z#* No changes.

<}\ Started by user Administrator

Revision: 19b3d11473e1737f4f832ab0e67f2aa1baldelel

» refs/remotes/origin/feature1

Ij Test Result (no failures)

4. Click on Keep this build forever to save the build.

[507]

Jenkins Best Practices

5. Come back to the job page, and you will see that the particular build has been
locked. Therefore, it will not be deleted during the cleanup activity:

Build History trend =

| RSS for all FJ RSS for failures

The last stable and last successful build are always stored as well.

The Keep this build forever option is available only if the Discard
Old Builds option is selected inside the Jenkins job.

Jenkins themes

The steps to manage Jenkins themes are:
1. From the Jenkins dashboard, click on Manage Jenkins. This will take you to
the Manage Jenkins page.
2. Click on the Manage Plugins link and go to the Available tab.
3. Type theme in the search box.

[508]

Chapter 8

4. Select Simple Theme Plugin from the list and click on the Install without
restart button:

4 Back to Dashboard

P Manage Jenkins

Filter: | 4, theme

Updates Available nstalled Advanced
Install | Name Version
Simple Theme Plugin
0.3

A plugin for Jenkins that supports custom CSS & JavaScript. You can customize Jenkins's
appearance (ex. his gentle face on the background).

Install without restart Download now and install after restart

5. The download and installation of the plugin starts automatically:

Installing Plugins/Upgrades

Preparation
s Checking intemet connectivity

s Checking update center connectivity
+ Success

Simple Theme Plugin 0 Success

P Go back to the top page
{you can start using the installed plugins right away)

&> Restart Jenkins when installation is complete and no jobs are running

6. Go to the Configure System link from the Manage Jenkins page.

[509]

Jenkins Best Practices

7. Scroll down until you see the Theme section, as shown in the
following screenshot:

Theme

URL of theme CSS

Specify URL of a theme CE5.

URL of theme JS

Specify URL of a theme JS.

8. Addthelink https://jenkins-contrib-themes.github.io/jenkins-
material-theme/dist/material-1ight.css in the URL of theme CSS field.

9. Inaddition, you can search for Jenkins themes on the Internet and add the
URL in the Theme section:

Theme

URL of theme CS3 https://jenkins-cantrib-themes.github.io/jenkins-material-theme/dist/materialight . css|

Specify URL of a theme C55.

URL of theme J5

Specifv URL of a theme JS.

The preceding theme is licensed under
i http://afonsof.mit-license.org/.

10. Save the configuration by clicking on the Save button.

11. If required, restart the Jenkins server.

[510]

http://afonsof.mit-license.org/

Chapter 8

12. Once done, move to the Jenkins dashboard and this is what you will see:

ﬁ Dashboard [Jenkins] x

&« C | [} localhost:8080/jenkins/

Jenkins

@ New ltem

-n, People

@ Build History

Continuous Integration Pipeline +

v
Cleaning_Temp_Directory
@ Project Relationship N eaning p. \

f@ Check File Fingerprint : Deploy_Artifact_To_Production_Server

@

a Manage Jenkins A

° ‘O‘ Deploy_Artifact_To_Testing_Server
O=p Credentials N
A

° O: Jenkins_Home_Directory_Backup

b

- My Views

\\ Job Config History Merge_Feature1_Into_Integration_Branch

Summary

In this chapter, we saw how to use the distributed build architecture using Jenkins
slaves to achieve load balancing. We can scale the Jenkins build cluster to any
number of slaves by adding new Jenkins nodes and grouping them under an
appropriate label. In any organization, audit plays an important role in identifying
what caused an issue. This is where the Jenkins plugins named jobConfigHistory and
Audit Trail come in handy. You might want to use both together. We also saw how
to send notifications using the HipChat tool. We discussed how to configure Jenkins
jobs to optimize disk usage by regular workspace cleanup.

Lastly, we saw how to use the Jenkins Simple Theme Plugin to make Jenkins
visually appealing.

[511]

Symbol

7-Zip package
URL 105

A

admin user
creating 140-145
advance e-mail notification
configuring 199-204
agile principles
about 7
reference 7
agile software development process
about 2
advantages 9
agile principles 7
Scrum development process 11, 12
Scrum framework 10
software development life cycle
(SDLC) 2,3
waterfall model 4, 5
working 8,9
Apache JMeter
installing, for performance testing 320-322
Apache Tomcat server
installing, on testing server 329-333
URL, for downloading 330
Artifactory
application, running 230-232
code uploading to, by configuring
Jenkins job 261-264
code uploading to, by creating
Jenkins job 259-261
environment variables, setting 229

Index

installing 228, 229
plugin, installing 242-245
repository, creating 232-235
URL 229

auditing, Jenkins
about 476
Audit Trail plugin, using 476-479

B

backup, Jenkins
about 105
Jenkins job, creating for periodic backup
105-111
restoring 112, 113
backward traceability 41
best practices, Continuous Integration 20-26
best practices, Jenkins jobs
about 497
jobs schedule, avoiding at same time 497,
498
jobs schedule, examples 498
job workspace, cleaning up 505
stable Jenkins releases, selecting 502-504
task, dividing across multiple jobs 499-501
themes 508-510
binary repository tool 228
branch configuration, in Git
Git commands, using 183, 184
Source Tree, using 181, 182
branching strategy, Jenkins CI design
about 156
feature branch 156, 157
integration branch 156
master branch 156

[513]

build breaker plugin
installing, for Sonar 222, 223
URL 222

build tools
Maven 37
MSBuild 37
using 36

C

centralized VCS
about 30
advantages 30
CI design 155
code, uploading to Git repository
Git commands, using 178, 179
Source Tree, using 174-177
components, Jenkins
about 47
Jenkins build 49
Jenkins job 48
Jenkins parameters 49
Jenkins pipeline 50
Jenkins plugins 51
Jenkins post-build actions 50
configuration management 38
Continuous Delivery (CD)
about 312, 389
committing and pushing change, on
featurel branch 389-392
Jenkins Continuous Delivery pipeline 392
job, exploring for performance
testing 401-404
job, exploring to perform deployment in
testing server 394-396
job, exploring to perform user acceptance
test 398-400
toolset for 318
Continuous Delivery Design 313
Continuous Delivery Flow (CD) 265
Continuous Delivery pipeline
about 314
feature branch poll 314
integration branch poll 315-317
visual flow, creating 371-444

Continuous Deployment
about 407, 408
frequent downtime of production environ-
ment 411, 412
need for 410, 411
toolset 418
versus Continuous Delivery 409, 410
Continuous Deployment Design
about 412
Continuous Deployment pipeline 413
Continuous Deployment, implementing
about 446
Jenkins Continuous Deployment pipeline
flow, implementing 446-448
Jenkins job, exploring for deploying code to
production 450-453
Jenkins job, exploring for merging code to
master branch 448
Continuous Deployment pipeline
pipeline to poll feature branch 413
pipeline to poll integration branch 414
Continuous Integration
about 2,13-18
achieving 26
agile, running on 19
analyzing 43
automating, with scripting languages 40
backward traceability 41
benefits 20, 42
best practices 20-26
build tools, using 36
committing and pushing changes 292-294
Continuous Integration tool, using 33, 34
defect tracking tool, using 41, 42
deployments, automating 37
development operations 26, 27
Eclipse, configuring to connect
with Git 272-280
Featurel branch, changes making
on 288-290
Featurel branch, Real-time Jenkins
pipeline 295
features, adding 43
freedom, from long integrations 42
in action 271
issues, catching faster 43
packaging, automating 35

[514]

production-ready features 42
rapid development 44
reporting 43

repository tools, using 32, 33

runtime server, adding to Eclipse 281-287

self-triggered build, creating 35
static code analysis, using 39
testing, automating 38, 39

testing, in production-like environment 40

version control system, using 27, 28
Continuous Integration design. See CI
design
Continuous Integration pipeline
visual flow, creating 264-271
Continuous Integration tool
using 33, 34
Continuous Testing 311

D

defect tracking tool
about 41
features 41
using 41
delivery pipeline plugin
installing 236, 237
development team 10
distributed builds
configuring, Jenkins used 456
running 469, 470
distributed VCS 31

E

Eclipse
configuring, to connect with Git 272-278
runtime server, adding 281-287
extreme programming (XP) 1

F

Featurel branch polling
changes, making 288, 289
Jenkin jobs 296-299
Jenkin jobs, to merge code to integration
branch 300-302
real-time Jenkins pipeline 295

feature branch
code, compiling 195, 196
code, testing 195, 196
frequent rebase 22

gated check-in mechanism 24
Git
installation link 163
Git commands
reference link 186
Git configuration
modifying 340, 341
GitHub repository
reference link 174
global security
enabling 137-140

H

HipChat
installing 480-482
integrating, with Jenkins 485-488
plugin, installing 489-492

increment 10
index.jsp file
modifying 380
integration 13
integration branch polling
Jenkins jobs, to upload code to
Artifactory 307, 308
integration branch 13,18
integration branch poll
Jenkins pipeline 245
integration branch polling
Jenkins jobs 304-306
real-time Jenkins pipeline 302

J

Java

installing, on testing server 320
Java configuration

modifying 339

[515]

Javadoc
publishing 198, 199
JDK
configuring 188
configuring, inside Jenkins 189
installing 188
Java environment variables, setting 188
Jenkins
about 47
advantages 52
auditing 476
backup 105
build, running 470
cloud support 52
community-based support 52
components 47
configuring 186
hardware requirements 54
HipChat, integrating with 485-488
more plugins available 52
multiple jobs, connecting with build
trigger option 205-207
open source 52
sample use cases 86
upgrading 114
used, for configuring distributed
builds 456
used, for polling version control
system 194
using, as centralized Continuous
Integration server 53
using, as Continuous Integration
server 52
Jenkins/Artifactory/Sonar web URLs
changing 336
Jenkins CI design
about 156
branching strategy 156
pipeline 158
toolset 160, 161
Jenkins CI pipeline
about 158
using, to poll feature branch 158
using, to poll integration branch 159, 160

Jenkins configuration
about 235, 334, 424
Artifactory plugin, installing 242-245
delivery pipeline plugin, installing 236
e-mail extension plugin, installing 191
Git plugin, installing 186, 187
Java configuration, modifying 339-341
JDK, configuring 188
JDK, installing 188
Jenkins/ Artifactory/Sonar web URLs,
changing 336, 337
Jenkins slaves, configuring on testing
server 342-346
Maven configuration, modifying 337
Maven, configuring 189
Maven, installing 189
performance plugin, configuring 334
SonarQube plugin, installing 238-241
TestNG plugin, configuring 335, 336
Jenkins Continuous Delivery pipeline
creating 347
existing Jenkins job, modifying 348
Jenkins job, creating to deploy code
on testing server 355-359
Jenkins job, creating to run
performance test 367-371
Jenkins job, creating to run UAT 359-367
Jenkins Continuous Deployment pipeline
creating 430
existing Jenkins job, modifying 430
Jenkins job, creating for deploying code to
production server 438-440
Jenkins job, creating for merging code
from integration branch to production
branch 434-438
Jenkins job, modifying 430-433
Jenkins home path
context.xml file, configuring 61
JENKINS_HOME environment variable,
creating 62
setting up 61
Jenkins installation, as service on Apache
Tomcat server
about 55
performing 59, 60
performing, along with other services 58
prerequisites 55, 56

[516]

Jenkins job

advanced project, modifying 348

advance e-mail notification,
configuring 254-259

best practices 497

build logs 101, 102

build, running 496, 497

build step, adding 95-97

build step, creating to build and
integration-test code 250-253

build step, creating to perform sonar
analysis 248, 249

configuration, for sending notification
with HipChat 492-496

configuring, to upload code to
Artifactory 261-264

creating 90-94

creating, to build 246

creating, to perform static code analysis 246

creating, to poll 246

creating, to run performance test 367-371

creating, to run UAT 359-367

creating, to upload code to
Artifactory 259-261

existing Jenkins job, modifying 348

home directory 103, 104

integration test 246

Jenkins SMTP server, configuring 98

modifying 463-469

modifying, to perform integration
test 349-351

modifying, to perform static code
analysis 349-351

modifying, to upload package to
Artifactory 352-354

post-build actions, adding 97, 98

running 100, 101

version control system polling for changes,
Jenkins used 247

Jenkins nodes

used, for configuring multiple build
machines 457-463

Jenkins, on Fedora

Jenkins port, changing on Fedora 85

latest stable version, installing 84, 85

latest version, installing 84

setting up 83

Jenkins, on Ubuntu
Jenkins port, changing on Ubuntu 82, 83
latest stable version, installing 80, 81
latest version, installing 80
setting up 79
Jenkins, on Windows
installing, jenkins.war file used 75-78
installing, native Windows
package used 67-74
Jenkins port, changing 79
setting up 67
Jenkins pipeline
Jenkins job, creating for building
feature 1 branch 193
Jenkins job, creating for building
feature 2 branch 207
Jenkins job, creating for merging code to
integration branch 204-213
Jenkins job, creating for polling
feature 1 branch 193
Jenkins job, creating for polling
feature 2 branch 207
Jenkins job, creating for unit testing
feature 1 branch 193, 208-210
Jenkins job, creating for unit testing
feature 3 branch 207
used, for polling feature branch 192
Jenkins plugins
installing, for periodic backup 129-131
managing 126
periodic backup plugin,
configuring 132-136
Jenkins Plugins Manager 126-129
Jenkins, running as standalone application
about 67
Jenkins, setting up on Fedora 83
Jenkins, setting up on Ubuntu 79
Jenkins, setting up on Windows 67
Jenkins, running inside container
about 54
Jenkins home path, setting up 61
Jenkins, installing as service on Apache
Tomcat server 55
server performance 63, 66
Jenkins slaves
configuring, on production server 425-428

[517]

Jenkins themes
reference link 510
jenkins.war file
URL 114
JMeter
URL 321
job workspace
cleaning 505, 506
Keep this build forever option,
using 506-508

L
Long Term Support (LTS) 114, 502

mainline branch 156

Maven
about 37
configuring 189
configuring, inside Jenkins 191
download link 189
environment variables, setting 190
installing 189

Maven configuration
modifying 337, 338

Merge Hell 22

MSBuild 37

multiple build machines
configuring, Jenkins node used 457-463

N

Netflix, sample use case 86
notifications
about 480
discussion forum, creating 483, 484
HipChat, installing 480-482

P

packaging
automating 35

performance plugin
creating 334

performance test
Apache JMeter, installing for 320-322
running, by creating Jenkins job 367-371
performance test case
creating 323-329
Perl
about 40
benefits 40
pipeline, to poll feature branch
about 413
Jenkins job 1 413
Jenkins job 2 414
pipeline, to poll integration branch
about 414
Jenkins job 1 414
Jenkins job 2 415
Jenkins job 3 415
Jenkins job 4 415
Jenkins job 5 416
Jenkins job 6 416
Jenkins job 7 416
POM file
modifying 380
product backlog 10
production branch 156
production server
Apache Tomcat server, installing 421-424
configuring 420
Java, installing 420
product owner 11
Project-based Matrix Authorization Strategy
using 149-153

Q

quality gate
creating 223-225

quality profiles 223
R

rebase 22
repository
creating, inside Artifactory 232-235

[518]

repository, creating inside Git
about 172
Git commands, using 173
Source Tree, using 172
repository tools
using 32
revision control system 27

S

sample use cases
Netflix 86
Yahoo! 87
scripting languages
automating with 40
Scrum development process
about 11
daily scrum meeting 12
sprint cycle 12
sprint planning 12
sprint progress, monitoring 12
sprint retrospective 13
sprint review 13
Scrum framework
about 2,10
development team 10
increment 10
product backlog 10
product owner 11
Scrum Master 11
sprint 10
sprint backlog 10
terms 10
Scrum guide 10
Scrum Master 11
self-triggered build
creating 35
software configuration management 156
Software Development Life Cycle
(SDLC)
about 2,312
design phase 3
evolution phase 4
implementation phase 3
requirement analysis phase 3
testing phase 4

sonar 51
SonarQube
application, running 218, 219
build breaker plugin, installing 222, 223
installing, to check code quality 216, 217
installing, URL 216
project, creating inside 220, 221
quality gates, creating 223, 224
Scanner, installing 225, 226
sonar environment variables, setting 217
Sonar environment variables, setting 217
Sonar Runner environment variables,
setting 227
SonarQube 5.1.2
about 216
URL 216
SonarQube plugin
installing 238-241
SonarQube Scanner
installing 225
URL 226
Sonar Runner environment variables
setting 227, 228
SourceTree
reference link 170
sprint 10
sprint backlog 10
standalone Jenkins master, upgrading on
Ubuntu
about 119
upgrading, to latest stable version 120
upgrading, to latest version 119
upgrading, to specific stable
version 120-122
static code analysis 39

Test Driven Development (TDD) 44
testing server
Apache JMeter, installing for performance
testing 320-322
Apache Tomcat server, installing 329-333
configuring 320
Java, installing 320
Jenkins slaves, configuring 342-346
performance test case, creating 323-329

[519]

TestNG plugin
creating 335, 336
installing 379
TFS 24
toolset, for Continuous Deployment
about 418
tools and technologies 418
twin paradox 21

U

unit test results
publishing 197, 198
upgrade, Jenkins
performing 114
running, on Tomcat server 114-116
script, for upgrading Jenkins on
Ubuntu 124, 125
script, for upgrading Jenkins on
Windows 123, 124
standalone Jenkins master, upgrading
on Ubuntu 119
standalone Jenkins master, upgrading
on Windows 116-118
user acceptance test
case, creating 384-386
creating, Selenium used 378
creating, TestNG used 378
indexjsp file, modifying 380
POM file, modifying 380, 381
TestNG, installing 379
testng.xml file, generating 386-389
user administration
about 136
admin user, creating 140-144
global security, enabling 137-140
other users, creating 146-148

Project-based Matrix Authorization
Strategy, using 149-153
users, creating 140
users
creating 146-148

\'

version control Jenkins configuration
about 471
jobConfigHistory plugin, using 471-473
modifying 473-476

version control system (VCS)
branches, configuring in Git 180
centralized version control systems 30
code, uploading to Git repository 174
distributed version control systems 31
example 29
Git cheat sheet 185, 186
Git, installing 163-169
polling for changes, Jenkins used 247
repository, creating inside Git 172
setting up 162
SourceTree (Git client), installing 170-172
types 30
using 27,28

w

waterfall model, software development
about 1,4,5
disadvantages 6
need for 7

white-box testing 39

Y

Yahoo!, sample use case 87

[520]

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Concepts of Continuous Integration
	The agile software development process
	Software development life cycle
	Requirement analysis
	Design
	Implementation
	Testing
	Evolution

	The waterfall model of software development
	Disadvantages of the waterfall model
	Who needs the waterfall model?

	Agile to the rescue
	How does the agile software development process work?

	The Scrum framework
	Important terms used in the Scrum framework

	How does Scrum work?
	Sprint planning
	Sprint cycle
	Daily scrum meeting
	Monitoring sprint progress
	The sprint review
	Sprint retrospective

	Continuous Integration
	An example to understand Continuous Integration
	Agile runs on Continuous Integration
	Types of project that benefit from Continuous Integration

	The best practices of Continuous Integration
	Developers should work in their private workspace
	Rebase frequently from the mainline
	Check-in frequently
	Frequent build
	Automate the testing as much as possible
	Don't check-in when the build is broken
	Automate the deployment
	Have a labeling strategy for releases
	Instant notifications

	How to achieve Continuous Integration
	Development operations
	Use a version control system
	An example to understand VCS
	Types of version control system

	Use repository tools
	Use a Continuous Integration tool
	Creating a self-triggered build
	Automate the packaging
	Using build tools
	Maven
	MSBuild

	Automating the deployments
	Automating the testing
	Use static code analysis
	Automate using scripting languages
	Perl

	Test in a production-like environment
	Backward traceability
	Using a defect tracking tool

	Continuous Integration benefits
	Freedom from long integrations
	Production-ready features
	Analyzing and reporting
	Catch issues faster
	Spend more time adding features
	Rapid development

	Summary

	Chapter 2: Setting up Jenkins
	Introduction to Jenkins
	What is Jenkins made of?
	Jenkins job
	Jenkins pipeline
	Jenkins plugins

	Why use Jenkins as a Continuous Integration server?
	It's open source
	Community-based support
	Lots of plugins
	Jenkins has a cloud support

	Jenkins as a centralized Continuous Integration server
	Hardware requirements

	Running Jenkins inside a container
	Installing Jenkins as a service on the Apache Tomcat server
	Prerequisites
	Installing Jenkins along with other services on the Apache Tomcat server
	Installing Jenkins alone on the Apache Tomcat server

	Setting up the Jenkins home path
	Method 1 – configuring the context.xml file
	Method 2 – creating the JENKINS_HOME environment variable

	Why run Jenkins inside a container?
	Conclusion

	Running Jenkins as a standalone application
	Setting up Jenkins on Windows
	Installing Jenkins using the native Windows package
	Installing Jenkins using the jenkins.war file
	Changing the port where Jenkins runs

	Setting up Jenkins on Ubuntu
	Installing the latest version of Jenkins
	Installing the latest stable version of Jenkins
	Changing the Jenkins port on Ubuntu

	Setting up Jenkins on Fedora
	Installing the latest version of Jenkins
	Installing the latest stable version of Jenkins
	Changing the Jenkins port on Fedora

	Sample use cases
	Netflix
	Yahoo!

	Summary

	Chapter 3: Configuring Jenkins
	Creating your first Jenkins job
	Adding a build step
	Adding post-build actions
	Configuring the Jenkins SMTP server
	Running a Jenkins job
	Jenkins build log
	Jenkins home directory

	Jenkins backup and restore
	Creating a Jenkins job to take periodic backup
	Restoring a Jenkins backup

	Upgrading Jenkins
	Upgrading Jenkins running on the Tomcat server
	Upgrading standalone Jenkins master on Windows
	Upgrading standalone Jenkins master running on Ubuntu
	Upgrading to the latest version of Jenkins
	Upgrading to the latest stable version of Jenkins
	Upgrading Jenkins to a specific stable version

	Script to upgrade Jenkins on Windows
	Script to upgrade Jenkins on Ubuntu

	Managing Jenkins plugins
	The Jenkins Plugins Manager
	Installing a Jenkins plugin to take periodic backup
	Configuring the periodic backup plugin

	User administration
	Enabling global security on Jenkins
	Creating users in Jenkins
	Creating an admin user
	Creating other users

	Using the Project-based Matrix Authorization Strategy

	Summary

	Chapter 4: Continuous Integration Using Jenkins – Part I
	Jenkins Continuous Integration Design
	The branching strategy
	Master branch
	Integration branch
	Feature branch

	The Continuous Integration pipeline
	Jenkins pipeline to poll the feature branch
	Jenkins pipeline to poll the integration branch

	Toolset for Continuous Integration

	Setting up a version control system
	Installing Git
	Installing SourceTree (a Git client)
	Creating a repository inside Git
	Using SourceTree
	Using the Git commands

	Uploading code to Git repository
	Using SourceTree
	Using the Git commands

	Configuring branches in Git
	Using SourceTree
	Using the Git commands

	Git cheat sheet

	Configuring Jenkins
	Installing the Git plugin
	Installing and configuring JDK
	Setting the Java environment variables
	Configuring JDK inside Jenkins

	Installing and configuring Maven
	Installing Maven
	Setting the Maven environment variables
	Configuring Maven inside Jenkins

	Installing the e-mail extension plugin

	Jenkins pipeline to poll the feature branch
	Creating a Jenkins job to poll, build, and unit test code on the feature1 branch
	Polling version control system using Jenkins
	Compiling and unit testing the code on the feature branch
	Publishing unit test results
	Publishing Javadoc
	Configuring advanced e-mail notification

	Creating a Jenkins job to merge code to the integration branch
	Using the build trigger option to connect two or more Jenkins jobs

	Creating a Jenkins job to poll, build, and unit test code on the feature2 branch
	Creating a Jenkins job to merge code to the integration branch

	Summary

	Chapter 5: Continuous Integration Using Jenkins – Part II
	Installing SonarQube to check code quality
	Setting the sonar environment variables
	Running the SonarQube application
	Creating a project inside SonarQube
	Installing the build breaker plugin for Sonar
	Creating quality gates
	Installing SonarQube Scanner
	Setting the Sonar Runner environment variables

	Installing Artifactory
	Setting the Artifactory environment variables
	Running the Artifactory application
	Creating a repository inside Artifactory

	Jenkins configuration
	Installing the delivery pipeline plugin
	Installing the SonarQube plugin
	Installing the Artifactory plugin

	Jenkins pipeline to poll the integration branch
	Creating a Jenkins job to poll, build, perform static code analysis, and integration tests
	Polling the version control system for changes using Jenkins
	Creating a build step to perform static analysis
	Creating a build step to build and integration test code
	Configuring advanced e-mail notifications

	Creating a Jenkins job to upload code to Artifactory
	Configuring the Jenkins job to upload code to Artifactory

	Creating a nice visual flow for the Continuous Integration pipeline
	Continuous Integration in action
	Configuring Eclipse to connect with Git
	Adding a runtime server to Eclipse
	Making changes to the Feature1 branch
	Committing and pushing changes to the Feature1 branch
	Real-time Jenkins pipeline to poll the Feature1 branch
	The Jenkins job to poll, build, and unit test code on the Feature1 branch
	The Jenkins job to merge code to integration branch

	Real-time Jenkins pipeline to poll the integration branch
	The Jenkins job to poll, build, perform static code analysis, and perform integration tests
	The Jenkins job to upload code to Artifactory

	Summary

	Chapter 6: Continuous Delivery
Using Jenkins
	What is Continuous Delivery?
	Continuous Delivery Design
	Continuous Delivery pipeline
	Pipeline to poll the feature branch
	Pipeline to poll the integration branch

	Toolset for Continuous Delivery

	Configuring our testing server
	Installing Java on the testing server
	Installing Apache JMeter for performance testing
	Creating a performance test case
	Installing the Apache Tomcat server on the testing server

	Jenkins configuration
	Configuring the performance plugin
	Configuring the TestNG plugin
	Changing the Jenkins/Artifactory/Sonar web URLs
	Modifying the Maven configuration
	Modifying the Java configuration
	Modifying the Git configuration
	Configuring Jenkins slaves on the testing server

	Creating Jenkins Continuous Delivery pipeline
	Modifying the existing Jenkins job
	Modifying the advanced project
	Modifying the Jenkins job that performs the Integration test and static code analysis
	Modifying the Jenkins job that uploads the package to Artifactory

	Creating a Jenkins job to deploy code on the testing server
	Creating a Jenkins job to run UAT
	Creating a Jenkins job to run the performance test

	Creating a nice visual flow for the Continuous Delivery pipeline
	Creating a simple user acceptance test using Selenium and TestNG
	Installing TestNG for Eclipse
	Modifying the index.jsp file
	Modifying the POM file
	Creating a user acceptance test case
	Generating the testng.xml file

	Continuous Delivery in action
	Committing and pushing changes on the feature1 branch
	Jenkins Continuous Delivery pipeline in action
	Exploring the job to perform deployment in the testing server
	Exploring the job to perform a user acceptance test
	Exploring the job for performance testing

	Summary

	Chapter 7: Continuous Deployment Using Jenkins
	What is Continuous Deployment?
	How Continuous Deployment is different from Continuous Delivery
	Who needs Continuous Deployment?
	Frequent downtime of the production environment with Continuous Deployment

	Continuous Deployment Design
	The Continuous Deployment pipeline
	Pipeline to poll the feature branch
	Pipeline to poll the integration branch

	Toolset for Continuous Deployment

	Configuring the production server
	Installing Java on the production server
	Installing the Apache Tomcat server on the production server

	Jenkins configuration
	Configuring Jenkins slaves on the production server

	Creating the Jenkins Continuous Deployment pipeline
	Modifying the existing Jenkins job
	Modifying the Jenkins job that performs the performance test

	Creating a Jenkins job to merge code from the integration branch to the production branch
	Creating the Jenkins job to deploy code to the production server

	Creating a nice visual flow for the Continuous Delivery pipeline
	Continuous Deployment in action
	Jenkins Continuous Deployment pipeline flow in action
	Exploring the Jenkins job to merge code to the master branch
	Exploring the Jenkins job that deploys code to production

	Summary

	Chapter 8: Jenkins Best Practices
	Distributed builds using Jenkins
	Configuring multiple build machines using Jenkins nodes
	Modifying the Jenkins job
	Running a build

	Version control Jenkins configuration
	Using the jobConfigHistory plugin
	Let's make some changes

	Auditing in Jenkins
	Using the Audit Trail plugin

	Notifications
	Installing HipChat
	Creating a room or discussion forum
	Integrating HipChat with Jenkins
	Installing the HipChat plugin
	Configuring a Jenkins job to send notifications using HipChat
	Running a build

	Best practices for Jenkins jobs
	Avoiding scheduling all jobs to start at the same time
	Examples

	Dividing a task across multiple Jenkins jobs
	Choosing stable Jenkins releases
	Cleaning up the job workspace
	Using the Keep this build forever option

	Jenkins themes

	Summary

	Index

